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INTRODUCTION

This Annual Report is the sixth of a series describing the results

of research conducted by the U.S. Geological Survey on behalf of the

National Aeronautics and SpaceAdministration. -_e report is in three

volumes corresponding to three main areas of research: Part A, Lunar and

Planetary Investigations: Part B, Crater Investigations; and Part C,

Cosmic Chemistry and Petrology; and a mapsupplement. An additional

The major long-range objectives of the astrogeologic studies program

are to determine and map the stratigraphy and structure of the Moon's
crust, to work out from these the sequence of events that led to the pre-

sent condition of the Moon's surface, and to determine the processes by

which these events took place. Work that leads toward these objectives

includes a program of lunar geologic mapping; studies on the discrimina-

tion of geologic materials on the lunar surface by their photometric,

polarimetric, and infrared properties; field studies of structures of

impact, explosive, and volcanic origin; laboratory studies on the behavior

of rocks and minerals subjected to shock; and study of the chemical,

petrographic and physical properties of materials of possible lunar origin

and the development of special techniques for their analysis.

Part C, Cosmic Chemistry and Petrology, includes reports on tech-

niques of study, analysis, and interpretation of data on materials of

knownor suspected extraterrestrial origin. A study jointly supported by

the Branch of Geochemical Census of the Geological Survey describes the

statistical treatment of superior analyses of tektites and the petrologic

interpretation of the results. A study jointly supported by the Southwest

States Branch of the Geological Survey deals with the petrologic signifi-

cance of tektite analyses. Minor-element data for basaltic meteorites are

reported. A theoretical and experimental study of the stability of mete-

oritic cohenite as a function of temperature and pressure is presented.

The cosmic dust investigations, supported by the National Aeronautics

and Space Administration and other government agencies, contributes a

report on the application of the scanning electron microscope and a pro-

gress report on the construction of laboratory facilities.
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USE OF THE SCANNING ELECTRON MICROSCOPE IN GEOLOGIC STUDIES

by Edward J. Dwornik

To evaluate the applicability of scanning electron microscopy to

various types of sample materials to be studied in the cosmic dust program,

a visit to the !ah__ of the Pulp and Paper P_search Institute of

Canada was a=ranged. Here, the instrument designed and built in the re-

search laboratories of Cambridge University, England (Oatley and Smith, 1955)

has been used as an adjunct to the conventional high resolution electron

microscope in research on paper and pulp fibers and related problems.

In the scanning electron microscope, a finely focused beam of elec-

trons approximately 500 A in diameter is accelerated by a voltage of 15 kv

and focused onto a sample at a 45 ° angle by magnetic lenses. Deflection

coils sweep the beam over the area of interest in a scanning sequence,

"kicking out" secondary low energy electrons from the sample surface.

These electrons are collected by a scintillation counter whose light out-

put is detected by a photomultiplier tube. The output from the photo-

multiplier is converted to a voltage, amplified and used to control the

brightness of a cathode ray tube in synchronization with the primary beam

scan. An image of the surface topography of the sample is presented on

the screen, and is photographed with a 35-mm camera. The area scanned

governs the magnification and is varied by controlling the deflection

coils. The area can be varied from several microns to several millimeters,

all_ing useful magnifications from 40, O00X to 100X. A mechanical stage

all_s for traversing up to a square centimeter of sample surface.

The resolution of the scanning electron microscope is limited to

500 A by the size of the focused electron beam. Theoretically, it is

possible to focus the beam to about 30 A, closer to the resolution of a

transmission electron microscope (< i0 A). For many electron-microscopic

studies in which replicas are made, the scanning electron microscope ap-

proaches the same capabilities with less sample preparation difficulty.

It is not possible to obtain electron diffraction information with the

instrument.



Fig. 1. Tektite; 86OX 

Fig. 3. Coccolith; 2730X 

Fig. 2. Obsidian; 1170X 

Fig. 4. Glauconitic clay; 69OX 

Fig. 5. Airborne dust; 4300X Fig. 6. Airborne dust; 2400X 
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Fig. l.--Surface of a freshly fractured tektite showing pock-marked

character. (Specimen from E. C. T. Chao, U.S. Geological Survey.)

Fig. 2.--Surface of obsidian (volcanic glass) showing a void that

is almost square in cross section.

Fig. 3.--Coccolith from glauconitic clay, NewJersey. These micro-

fossils represent ideal subjects for scanning electron microscopy. The

intricate architecture is readily depicted and study of manyspecies would

be simplified by this technique. This specimen was located on a mount pre-

pared for conventional electron microscopy.

Fig. 4.--Part of a bulk sample of glauconitic clay from which the

specimen in figure 3 was recovered. A glauconite pebble, a book of mica,
and several coccoliths are evident. This direct observation of the bulk

dry sample makesseparation and suspension of constituents unnecessary and

reduces the possibility of introducing artifacts that could cause difficul-

ty in interpretation of standard electron micrographs. Microtextural study

of loosely compactedsediments is greatly facilitated. (Specimens from

H. Gill, Water Resources Division, U.S. Geological Survey.)

Fig. 5.--Particles trapped on a millipore membranefilter. The hollowed-

out spherules would appear solid in a transmission electron micrograph, due

to absorption of the electron beam, and the true shape would be lost. The

particles adhering to the surface of the spherules are readily observable

by this technique, but might be missed in conventional transmission micros-

copy. Filter pores of I _ can be seen in background.

Fig. 6.--Angular dust particles trapped on a cotton filter fiber.

Hygroscopic particles and those soluble in water or organic liquids can be

prepared for the scanning electron microscope directly, without suspension
in distilled water.



F i g .  11. Metallic spherule; 680X F i g .  12. Quartz crystals; 2 l U X  
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Fig. 7.--Fibrous crystals of hewettite, a calcium vanadate. The large
depth of focus of the scanning electron microscope is emphasized in this

relatively low magnification photograph.

Fig. 8.--Termination of serpentine fiber. This 3/4 end view shows that

the fiber is solid rather than tubular. Cleavage would produce lathlike
particles.

Fig. 9.--Part of a blue-green alga (fig_ I0), devoid of the calcareous
m _.. L ......... • - I •

n_7_T_._eh =h_._ _ ..... _^_ _,=j ,=v= _Lv_u _ _ocl for secreEing cai-

cite. The skeletal character of the "wooly" calcite is resolved in the

background.

Fig. 10.--Calcite-secreting algae from Russell Cave, Alabama. Each

of the "wooly" calcite tubules surrounds an alga responsible for its

secretion. (Specimen from J. Back, U.S. Geological Survey.)

Fig. II.--A metallic spherule exposed on a fracture surface of a

philippinite(tektite). This technique offers an excellent means for study

of surface irregularities and features of metallic and other inclusions in

tektites. (Specimen from E. C. T. Chao, U.S. Geological Survey.)

Fig. 12.--Two well-developed quartz crystals growing from a common seed.

The crystals in various stages of growth were recovered by digestion of an

oolitic limestone in boiling HCI and an oxidizing bleach. Information on

morphologic development, etch patterns, and surface features of crystals

and seeds can be obtained. Replication of these features is virtually

impossible by conventional electron microscope techniques. (Specimens

from L. G. Henbest, U.S. Geological Survey.)
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For highly irregular surfaces, the inherently great depth of field of

the scanning electron microscope allows the complete depiction of the ob-

ject's surface. If necessary, stereomicrographs maybe prepared by chang-

ingthe specimenangle slightly between exposures. The increased resolu-
tion (about i0 times better) of the instrument over the optical microscope,

together with the depth of fiel_ gives the scanning electron microscope

unique capabilities for studying etched mineral grain surfaces, microfos-

sils, filters, etc. Examplesof scanning electron micrographs are shown

in figures 1-12.
The samplesare prepared for examination simply by cementing them to

the surface of an aluminum disc. The disc and sample are placed in a

special holder and rotated at 200 rpm in a vacuumwhile a weighed amount
of Au-Pd wire is evaporated onto the whirling disc from an angle of 60° .

This insures that all surfaces of the sample are electrically conducting.

The placement of the specimen in a high vacuumand resultant desicca-

tion may preclude the study of somematerials. Also, bombardmentby the

electron beamcan cause somedifficulty in samples that are nonconducting
and hollow or skeletal. This limitation can be overcometo a great extent

by evaporating the conductive metal coating onto the specimen and working

with a lower accelerating potential of the electron beam. Direct observa-

tion of nonconducting materials is an objective of the scientists engaged

in developing this instrument.
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MULTIVARIATE ANALYSIS OF GEOCHEMICAL DATA

ON TEXAS TEKTITES (BEDIASITES)

by A. T. Miesc_ , E. C. T. Chao, and Frank Cuttitta

Introduction

Tektites are small, variably shaped masses of silicate glass which

occur at a number of widely separated localities on the earth. Some of

the better known localities are Czechoslovakia, southeast Asia, Australia,

the Ivory Coast of Africa, and east-central Texas and Georgia in the

United States. Most tektites are less than an inch or two across; com-

plete specimens have definite shapes characteristic of the localities in

which they were found, and most are completely lacking in crystalline

mineral matter. Crystalline metallic nickel-iron, in small spherules,

has been observed in some specimens from the Philippine Islands and Indo-

china.

Tektites have been found in a wide variety of geologic environments

and it is generally agreed that they have been transported some distance

from their sites of origin. The shapes of tektites, considered in view

of aerodynamic principles, indicate that they were transported through

the atmosphere, and it is commonly, though by no means universally, held

that they are of extraterrestrial origin, derived, perhaps, as a result

of meteoritic impact on the surface of the moon (Chapman, 1964; Chao

and others, 1964). If this is true, the compositions of tektites have

broader implications than those pertaining to their own character and

origin; they may have especially important bearing on problems of lunar

geology.

There are, of course, many aspects of compositional data on tektites

that are of interest in searching for clues to the nature of their parent

material or the processes that have affected their compositions. Of

fundamental interest are the absolute amounts of each constituent, as

i Branch of Geochemical Census, U.S. Geological Survey.
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well as ratios and other functions of the constituent abundances. These

properties of tektite compositional data have already received a great

deal of attention in the literature. So far, however, no rigorous anal-

ysis hasbeen made of correlation relations among various constituents or

constituent ratios in tektites; most published work is based on graphical

analysis only, and other work has failed to take some complexities of com-

positional data into account or to extract much of the information that

is present.

Techniques of multivariate statistical analysis now available make

it possible to evaluate the complexities and to gain some insight regard-

ing causes that have operated in fixing the tektite compositions. As

theory pertinent to the problems treated has not been completely devel-

oped, our approach has been largely empirical. Nonetheless, the applied

techniques have been found to lead to results that are both intuitively

valid and geologically meaningful. Moreover, the techniques are probably

useful in a broad range of petrologic problems.

The complexities in compositional data referred to stem partly from

the effects of closed arrays, a subject studied and discussed extensively

by Chayes (1960, 1962, 1964). Closed arrays of data are those in which

rows, each representing a specimen or sample, have a constant sum; con-

stituents in each specimen add up to i00 percent, i0s parts per million,

etc., depending on how the data are expressed. The problem with data of

this sort has been vaguely considered by geologists for some time, but

the work of Chayes has shown that it is far more serious, and of broader

importance, than previously realized. In addition, his analysis of the

problem has led to a foundation upon which further studies may be based.

The problem created by the closed array is most easily explained, in

a qualitative way, in terms of a set of rock samples containing only two

major components (say, quartz and feldspar). The two components necessar-

ily have a perfect negative correlation with each other among the specimens.

This is a correlation caused not necessarily by geologic processes, but by

the fact that the compositional dats, to be meaningful, must be expressed

on an equal weight (or volume) basis. If the rock samples contained three

major components (say, biotite, in addition to quartz and feldspar) the

8



effect of the closed array would still be present, but less pronounced.

Commonlyfive or six major componentsare present, but the effect of the

closed array is still highly significant.
All of our work verifies Chayes' analysis of the problem, and clearly

substantiates his alarm about the seriousness and widespread consequences

of the matter. Wefind, in fact, that the situation is perhaps even more

alarming than he tells us, for not only the major components, but some

minor componentsas well, are affected by the closed array to an important

degree.
One important consequenceof the closed array, as shownby Chayes,

is that correlation coefficients derived from compositional data cannot

be meaningfully comparedwith or tested against zero, as is normally the

custom with data from open arrays. Chayes gives methods for determining

average test values, but they are not useful for testing individual cor-

relation coefficients (Chayes, 1960, p. 4190-4191). The difficulty does

not stem from use of correlation coefficients, as equally troublesome

difficulties arise in interpretation by just scanning the data or by

plotting it on any type of variation diagram. Strong observed relation-

ships may actually be no greater than one should expect from values drawn

from a random-numbertable, if the randomnumbersare forced into a

closed array.

Aside from examination and testing of correlations amongindividual

constituents of the tektites, ratios of constituents and sumsof various

constituents are of fundamental importance in tektite studies. Such

multivariate functions treated by Chao (1963) are:

FeO+ MgO

Na_O + K_O

(FeO + MgO + CaO)/(Na_O + K_O)

Fee Oa /FeO

Cr + Co + Ni

A few of the other multivariate variate functions regarded as having pos-

sible significance are:

Rb + Li

MgO/Li

9



K_O/Na_O

Rb/Li

Some of these, and a number of others, have been of interest to other

investigators of tektite compositions. Their importance and meaning in

tektite petrology are discussed in other papers (cf. Chao, 1963; Schnetzler

and Pinson, 1963; Cuttitta and others, 1964; SchHller and Ottemann, 1963).

Although these multivariate functions (and, especially, relations

among them) are of basic importance, they introduce some difficulty in

statistical analysis. For example, the ratio (FeO + MgO + CaO)/(NaeO

+ KeO ) has been used to discriminate between tektites from different

strewn fields (Chao, 1963, p. 74, 79), and may be a useful index of mag-

matic differentiation in tektite petrology. Therefore, correlations be-

tween this ratio and other variables (some of which are contained in the

ratio) are of interest. However, there is no a priori certainty that it

is proper to test these correlations against zero, or to accept an orderly

trend on a variation diagram as having any petrographic significance.

In the absence of theory on which tests of correlations derived from

closed arrays or from ratio data may be based, we have tested observed

correlations against those derived from simulation studies, wherein closed

arrays of random normal deviates are constructed to simulate the real data

on hand. The basis for the method of construction was given by Chayes

(1960, p. 4191-4192), but has been extended here to make its use practical.

Correlation values derived from the real data which we studied were tested

against those derived from the closed random deviates. The original cor-

relations were then corrected and used to interpret petrographic relations

among the variables by means of factor analysis techniques.

The data employed are chemical, spectrographic, and physical property

determinations on 21 bediasite specimens from east-central Texas.

Geology and character of the bediasites

The bediasites of east-central Texas occur in a lag gravel, several

inches thick, of post-Eocene and pre-Recent age, and overlying sandstone

and shale of the Eocene Jackson Group. Specimens have been found in a

belt, about 140 miles long, extending from Gonzales County in the
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southwest to Grimes County in the northeast. The lag gravel consists of

predominantly red, gray, white, yellow, and black chert; rounded milky

to buff-colored quartz pebbles; and fragments of black to grayish-white
silicified fossil wood.

The bediasite specimensare jet black in reflected light and are

rounded owing to sedimentary transport. They range in diameter from less

than a quarter of an inch to 2 or 3 inches and showno apparent effects

of chemical weathering. Additional characteristics of bediasite specimens

are given by Barnes (1939, p. 493-511) and Chao (1963, p. 68).

Analytical data

The analytical data used in this study have been given in a previous

paper by Chao (1963, tables 5, 8). They consist of chemical and spectro-

graphic determinations of 22 major and minor elements, and measurements

of refractive index, specific gravity, and magnetic susceptibility, on

21 specimens. Means, Xj, and standard deviations, sj, for each variable,

as well as relative deviations (Cj = sj/Xj), are given in table i (col-

umns 2-4). Other general characteristics of the analytical data, and of

the analytical techniques are given by Chao (1963, p. 66-85). It will

be sufficient to note here only a few points that will be pertinent to

the following discussion.

The bediasites are remarkably uniform in composition, as are most

tektites from a single strewn field. The relative deviations (table i,

column 4) are all less than 0.6. The variation for most elements, how-

ever, is considerably greater than the standard error of the correspond-

ing analytical method. (Compare columns 3 and 9 in table i.)

The low relative deviations, especially of the minor elements, are

uncommon in geochemical data. In most minor-element data for terrestrial

rocks, the relative deviations approach or greatly exceed i, making it

necessary to transform the data in order to achieve frequency distribu-

tions that more closely approximate the normal form. Such transformations

were not necessary in the present work.

Chao (1963, p. 87-88) has shown that the bediasites and other tektites

resemble, in gross compositional character, a number of terrestrial
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materials, including alkali rhyolites, granophyres, ioesses, and soils.

A comparison of the average bediasite composition with that of the average

"low-calcium granite" (Turekian and Wedepohl, 1961), nearly identical in

composition with the average granophyre used by Chao, is given in table 1

(columns 2, 8). The bediasites are apparently higher in total iron, MgO,

TiO 2 , Cr, Co, Ni, and V, and lower in the alkalies, Na_O, KeO , Rb, and Li,

as well as P_O s. The average concentrations of SiO_, AleOs, and a few

other constituents, however, are remarkably similar.

Testing correlation coefficients

Prior to Chayes' work (1960, 1962) on closed arrays of compositional

data, most geologists gave careful _hought to only two factors as con-

trolling the magnitudes of correlation coefficients or the nature of pat-

terns on variation diagrams. One factor, of course, was petrogenetic

association caused by chemical and physical properties of the constituents

and their response to processes acting during rock genesis. The other

factor was chance; it was always realized that some high correlation co-

efficients or well-defined trends on variation diagrams could be fortui-

tous, especially where the data were meager.

The work of Chayes has created an awareness that correlations and

variation trends can also be affected by the particular numerical struc-

ture of the data. This structure, or system into which the data are

forced, may affect correlations in either a positive or negative direc-

tion, and may either create or reduce scatter about a variation diagram

trend; it may also affect the direction of the trend slope. The part

of the numerical structure of compositional data of principal concern

to Chayes has been the constant row sum, when the data are arranged in

a rectangular array with rows representing individual rock samples and

columns representing rock constituents.

Many arrays of compositional data in geology are augmented with ad-

ditional columns representing functions of the original data, such as

ratios and sums. The ratios and other functions are only rearrangements

of the original data, and although they do not represent any basically

new information, they are more easily interpreted in terms of response

13



to geologic processes. However, correlation among the functions or be-

tween the functions and original variables can result from their numerical

structure, or from the structure of the closed data from which they are

derived, in the absence of petrogenetic associations among the variables.

Chayes' (1949) work, based on a mathematical analysis by Reed (1921), has

shown that the correlation of _ /X_ with XI, for exampie, where the cor-

relation between XI and Xe is zero, is determined entirely by the means

and variances of Xl and X_ and cannot be zero if any variance whatsoever

is present in Xe . It showed, further, that a correlation between such

variables as XI /Xe and X3 is dependent largely on the correlations of XI

and Xe with Xs; such correlation, of course, may be introduced solely by

the numerical structure of the closed array.

In statistical analysis of the bediasite data, because of the absence

of completely developed theory useful for correcting the effect of the

numerical structure, we approached the problem through data simulation

studies, by an extension of the technique given by Chayes (1960, p. 4191-

4192). The general procedure, executed entirely within a B5500 computer,

is as follows:

i. Construct P open arrays of normal random deviates, dij , each

having 21 rows (designated by i), representing the 21 bediasite specimens,

and 25 columns (designated by j), representing the 22 elements and 3 phys-

ical properties listed on table i. Each column has a population mean of

zero and variance of one. The row sums in each array will be variable,

and correlations among columns will be close to zero if the derivation of

d.. is unbiased.
lj

2. The means and variances of each column in each open array are

., respectively, using the equation:
adjusted to new values _j and cj

Dij = _jdij + _j (I)

Row sums in each array of D.. will still be variable, and correlations
lj

among columns will still be close to zero.

The squares of the constant o. are the variances of columns in the
J

open arrays. On closing the arrays (adjusting each row sum to i00), the

variances of columns having large variance will change. The objective

14
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in selecting the c. values is to set column variances in the open arrays
J

so that on closure the new column variances will closely approximate the

column variances in the real data array. For columns representing vari-

ables with small variance (s. < 0.I percent, table !, column 3), c. is
J J

set equal to s.. For columns representing the other variables, j = 1 to
J

j = 9 (table i), g. is derived by extension of a technique given by Chayes
J

(1960• p. 4192). His fundamental equation is:

X.. _ m. \2 - _. _t i_
Var = + -2 j <2)

T / , . _ . _.-
J J

where the quantity on the left side of the equation is the variance of

the jth variable in the closed array (when the variable is expressed as

a decimal fraction of the row sum), _j and _ are the population mean and

variance of the jth column in the open (Dij) arrays to be generated, -

is the sum of _j values across j and 2 is the sum of the _ values• -t j

across j .

Setting 7 equal to I00, and multiplying both sides of (2) by 104

gives the equation for the variance of the jth variable in the closed

array in units of percent:

Var (Xj) = _ __[ + T-04 - 2 ---/--- ; (3)
J _2 100,_. J

J 'J

Writing the quantity _ as (_ + _ + _ + _...), equation (3) ._y be
rearranged, for j = 1, to:

Var X I =
,_ 104+ d - 200_',,_ __

_I + ( °_e + _ + o_4 .) (4)io• .; io4 "" "

If we let

and

104 + 2 200_j
a.- _i
j 104 ' (5)

bj , (6)

a set of linear equations, each equation representing a variable, is

obtained as follows:

15



Var Xl = a1_-i
J

Var Xe = b_q_ + a._c_ + b_ + ... b_....

var = + + + ...
J

(7)

Var X.] = bjo_ + bjo___+ bjo_s_+ ... a._e.]J ...

Using the variances from the original data on the left sides of the

equations, and the means from the original data in (5) and (6), the

equations are solved for values of o_.
J

Using means and variances of the first 9 variables (table I, column

I) in the bediasite data, and grouping the remaining chemical elements

into a tenth variable, all i0 values of _. derived from (7) were positive.
O

The mean for the tenth variable was taken as the sum of the means within

the group, and the variance was taken as the sum of their variances. Then

the first 9 derived values of o. were used in (i).
]

In application of the method to other data sets pertaining to ter-

restrial igneous rocks, some of the oe. solutions were negative, making
J

it impossible, of course, to obtain o. for use in (i). We have found
J

that zero values used in place of the undefined square roots are satis-

factory for at least some problems, but further investigation is needed.

3. Within each of the P arrays of Dij , each row is summed across

the 22 columns representing chemical constituents, and each of these

22 values in the row is multiplied by the quantity i00 over this sum.

After this closure procedure, the means of columns are essentially un-

changed. If the initial values of o. in (i) are completely satisfactory,
J

the variances of all 25 columns are very similar to the corresponding

columns in the real data. In addition, correlation among the 22 columns

involved in the closure may now be present--correlations in excess of

those that can reasonably be ascribed to chance. These correlations re-

suit primarily from the numerical structure of the closed arrays. None

of the correlation, of course, is due to petrogenetic association.

4. In this experiment the number of closed arrays of random deviates

generated, P, was 30. The grand mean and square root of the mean variance

16
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for each column across the 30 arrays was then derived. These are given

in table I, along with relative deviations (table I, columns 5-7). The

generally close correspondence of the overall statistics on the closed

arrays of random deviates to those derived from the real data attests to

the success of the simulation procedure, and particularly to the useful-

ness of Chayes' equation for the estimation of _. values in this problem.
J

5. Each of the P matrices is next augmented by the addition of 9

columns, each representing one of the ratios or other functions listed

previously. The functions were computed from values in the closed arrays.

The first augmented column in each array represents the variable FeO + MgO,

and was derived, row by row, by summing the values in the columns repre-

senting these two constituents. A similar procedure was used for the

other 8 columns.

6. The 30 arrays of closed random deviates simulating the original

data set then each consisted of 21 rows and 34 columns (22 representing

chemical constituents, 3 representing physical property measurements, and

9 representing ratios or other functions). Correlation coefficients were

then derived for each pair of columns in each array. Each coefficient

was then transformed to Fisher's Z (Snedecor, 1956, p. 175) and the mean,

Z , and variance of Z were computed. The variance of Z for each coef-
m

ficient among the 30 arrays agreed reasonably well with the theoretical

value given by I/(N_ - 3), where _ = 21, the number of pairs on which

each coefficient is based. The mean Z (Zm) was transformed back to a

value we have called rm, the average correlation coefficient for the P

matrices of closed random deviates. The quantity, rm, is also an esti-

mate of the expected correlation from the bediasite data in the absence

of petrogenetic association. Departures of r from zero are due entirely
m

to the numerical structure of the closed arrays and the functional vari-

ables, and to correlation arising by chance.

Significance of differences between a correlation coefficient, r,

derived from the real data and the equivalent value of rm, derived from

the closed arrays of random deviates was tested, finally, using a method

based on Snedecor (1956, p. 178):
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Fig. l.--Comparison of correlations in the bediasite data, r, with

those from closed arrays of random deviates, rm. Circles represent

correlations involving chemical constituents only. Crosses represent

correlations involving physical property measurements. Correlations

involving functional variables are not represented. Arcs show critical

values of r for corresponding values of rm, at the 95 percent confidence

level. Some points falling within clusters of others are not shown.
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Z _Z
i

m

t - , (8)
c d

where _d is the standard error of the difference between Z and Zm, and

Z and Z are the corresponding Z values for r and r . The standard error
m m

is derived from:

s i ! _½

Cd = _ P(N_ - 3) + N_ - 3 S = 0.24, (9)

where p = 30 and N: and N2, the number of rows in the arrays of random

deviates and the original data, respectively, are both equal to 21. The

significance of t at the 95 percent confidence level is determined from

a table of t for _ degrees of freedom (Snedecor, 1956, p. 46).

Where a value of r is significantly different from the corresponding

value of rm, at the 95 percent confidence level, it is concluded that the

value of r, regardless of its absolute magnitude (i.e., whether it is

very high or near zero), could result less than 5 times in I00 by chance

alone. The presence of a petrogenetic association is then indicated.

It is apparent from (9) that relatively little would be accomplished

by extending the simulation (increasing P). The power of the test for

significance is severely l_mited by the small size of N2--the number of

bediasite specimens studied. The critical value of r where r equals
m

zero is I0.44J. If P were _ the critical value would be I0.431. Where

r is equal to -0.5, values of r are significant when r < -0.75 or r
m

> -0.03. If P were = these critical values would be essentially unchanged.

Comparison of correlations in the bediasite dataj r i with

those from closed arrays of random deviates, r
m

Values of both r and r for each pair of variables are given in
m

table 2, and those not involving the 9 functional variables are compared

graphically in figure i. Two properties of the r values are especially
m

noteworthy. First, all r values involving an open variable (i.e., a
m

column representing a physical property measurement and, therefore, not

involved in the closure) are close to zero, the spread about r = 0
m
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corresponds well to the theoretical standard error of ZI :

C 0.043 (io)
°z =\ P(N_ - 3)

The second property of the rm values is interesting in view of the fact

that the variance of SiO_ in the bediasite data exceeds the sum of the

variances of all other constituents (table i). All values of r involv-
m

ing the column representing SiO 2 are negative, whereas nearly all cor-

relations involving columns representing chemical constituents other than

SiOe are positive. There are 3 exceptions out of 210 values, and none

of these exceeds the absolute quantity of 0.04. This is strong veri-

fication of Chayes' conclusion regarding the effects of closure in arrays

of this type--namely, that all the correlations of the highly variable

column are negative, and that one or more of the other correlations must

be positive (Chayes, 1960, p. 4186).

From figure i it is apparent that the high correlation, r, between

SiO e and AI2_ in the bediasite data is not significantly different from

that which may be expected solely from the effects of closure. On the

other hand, low correlations of SiO_ with N_O and KeO , while not signif-

icant when tested against zero, do depart significantly from the high

negative correlations expected in the absence of petrogenetic association.

Similarly, the relatively low negative correlation between AIs_ and

Na_O (-0.33) is notably different from the high positive value (0.48) de-

rived from the closed arrays of random deviates, whereas the apparently

high correlation between Na_O and P_O 5 (0.53) cannot actually be regarded

as significant.

An unexpected result of the testing procedure was the discovery

that some of the correlations among the minor elements are greatly

affected by closure. For example, some values of r involving.the column
m

representing Rb are notably high (table 2: Rb vs. SiO_, AleOs, Co, Na_O,

and KeO ). Rb, however, contributes less than 0.15 percent of the total

variance in the original data array, or in the closed arrays of random

I Values of r less than 0.25 are equal to corresponding values of

Z to 2 significant figures.
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deviates. Examination of table i discloses that the relative deviation

of Rb is notably low, as are the relative deviations of the major constit-

uents SiOe_ and A_O 3 . We find, in fact that the magnitudes of r vales, ' m

correspond rather well, although not perfectly, to the relative deviations

of the constituents involved (table 3). A prevalent feeling among petrolo-

gists seems to be that correlation coefficients involving minor elements

are independent of closure effects and may be interpreted without regard

to such effects. Our experiments suggest, however, that this is not al-

ways true, and that correlations involving any element having a low stand-

ard deviation in proportion to its mean may be affected to an important

degree. On the other hand, the relative deviations of minor elements in

most geochemical data, unlike the bediasite data, are large, and Chayes'

assertion that the closure effects can nearly always be ignored when the

absolute variances are small is undoubtedly true (Chayes, 1960, p. 4185).

Many of the correlations among the nine functional variables, and

between the functional variables and the individual chemical constituents,

that would have attracted interest if we were entirely blind to their

underlying numerical structure, are revealed as completely nonsignificant

(table 2). The correlation between FeeO 3 and the F%O3/FeO ratio, for

example, is almost exactly that obtained from the closed arrays of random

deviates (0.95 vs. 0.93, table 2). On the other hand, the rather weak

correlation between FeO and the F%Os/FeO ratio in the bediasite data

(0.32) is revealed as a significant indication of an actual positive

relationship; the correlation is significantly more positive than one

should expect from variables with this underlying numerical structure.

The correlation between SiO 2 and the function Na_O + KeO (0.23) would be

regarded as nonsignificant without consideration of the effects of the

closure; as shown in table 2, however, the closure imposes strong negative

correlations of SlOe. on NaaO and K_O, thereby causing an even stronger

negative correlation with their sum. As a result, the expected correl_

tion between SiO 2 and Na20 + KeO is in the order of -0.73, and the value

of 0.23 is determined to be highly significant.

The preceding discussion has emphasized reversals in judgments ne-

cessitated by observations on the effects of closure. A great many
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correlations are not affected by closure, and the correlations in the

original bediasite data may be properly compared and tested against zero.

However, knowing that this procedure is proper would have been difficult

without the information gained through the simulation and testing process.

Correlations of the ratio (FeO + MgO + CaO)/(Na20 + KeO ) with chem-

ical constituents in the bediasites appear to be almost free of closure

effects; few r values differ very greatly from zero (table 2). (The
m

r value representing FeO vs. this ratio is a notable exception.) This
m

ratio, therefore, may be a useful variable in variation diagrams, at

least for the bediasites and possibly for other tektite groups. We can

be reasonably certain, for example, that the high correlation of SiOe

with this ratio, as indicated in table 2 or in a variation diagram given

by Chao (1963, p. 78), is beyond that which could be caused by the numer-

ical structure of the variables.

Methods of factor analysis

Without attempting an elaborate account of the aims of factor analy-

sis methods, we can nevertheless present a brief qualitative explanation.

The primary aim of the procedures is to resolve an array of measures such

as the correlations in table 2 into a framework that can be interpreted

in terms of geologic processes thought to have been responsible for the

variation and covariation in the data. It is rather easy to demonstrate

that only a few very simple underlying geologic processes can be funda-

mentally responsible for matrices of correlation coefficients that are

nearly beyond any meaningful overall appraisal by inspection alone. This

has already been done by Imbrie (1963, p. 7-12).

An excellent introduction to factor analysis techniques, and their

geologic applications, is given by Imbrie (1963). He also provided a

FORTRAN computer program for the basic operations (see also Manson and

Imbrie, 1964). The methods have already been applied in a number of

geologic problems (cf. Imbrie and Purdy, 1962; Griffiths, 1964; Harbaugh

and Demirmen, 1964). We used the program given by Imbrie (1963) trans-

lated into ALGOL for the B220 computer; this necessitated reducing the

maximum number of columns in the data array from 70 to 25. The factor
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analysis methods, then, included the principal componentmethod of factor-

ing and the varimax method of factor rotation (cf. Harman, 1960, p. 154,

301). Unities were inserted in the diagonals of correlation matrices used

as input, thus providing a closed model in the terminology of Cattell

(1965, p. 198).
The methods consist, in essence, of plottin$ n vectors of unit length

in n dimensional space by techniques of matrix algebra (or, more correctly,

of finding the coordinates of n unit vectors in n dimensional space),

where each vector represents a variable and n is the number of variables.

The cosine of the angle between any two vectors plotted is equal to the

correlation coefficient (or some other measure of association used as

input to the procedure) between the variables the vectors represent. Al-

though the n vectors are free to occupy the n dimensional space they com-

monly occupy somewhat fewer dimensions or occur mostly within fewer dimen-

sions (three vectors would occur mostly in 2 dimensions, for example, when

they lie almost in the same plane, or in one dimension when they almost

coincide).

Orthogonal axes are placed within the n dimensional cluster of

vectors and used as a reference system for describing the vector orienta-

tions. The coordinates of the vectors, referred to the axes, comprise

the factor matrix. By use of the principal components method of deriv-

ing the factor matrix, the reference axes are placed so that the sum of

the squares of the vector projections on axis I is a maximum. Axis II

is then perpendicular to axis I, but oriented so that the vector projec-

tions on it are a maximum. Successive axes are orthogonal to all pre-

ceding axes, each placed within the n dimensional space so that vector

projections on it are as high as possible in view of the orthogonality

restriction (Harman, 1960, p. 155).

Each row in the factor matrix represents one of the n variables and

each column refers to one of the n reference axes. The sums of the

squares for each of the columns are equal to the eigenvalues of the cor-

relation matrix, whereas the sums of squares for each of the rows are

unity. The eigenvalues indicate the degree of clustering of the vectors

about the successive axes. If the input to the factor analysis procedure
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is a matrix of correlation coefficients where all values of rjk = 0

(j @ k) and values of r.. = i (i.e., a unit matrix) all eigenvalues are
JJ

unity (see eigenvalues of r on figure 2), indicating no clustering about
u

any reference axis.

Where some of the correlation values are nonzero, the vectors repre-

senting the variables may cluster about the reference axes and, therefore,

lie mostly in space of less than n, say m, dimensions. If this is true,

it is appropriate to rotate m reference axes so that the vectors will be

as closely associated with the new reference system as possible. This

is accomplished by applying a mathematical criterion included in the

varimax method (Harman, 1960, p. 301). The vectors are then projected

into the m dimensional space. A new set of vector coordinates--the ro-

tated factor matrix--is then obtained. The rotated axes, now, may be

rotated further into any position desired. Their mutual orientation

at this point, however, is generally orthogonal. Oblique reference axes

are suitable in some problems (Imbrie, 1963, p. 16).

After projection of the vectors from n to m dimensional space, some

or all may be less than unit length. The square of the vector length,

h, is termed the communality, he , of the variable.

The significance and meaning of factor solutions obtained through

the procedure outlined roughly here are most easily realized from a

numerical example, as shown by Imbrie (1963), who gave a clear explana-

tion and verification. Here we shall simply state the manner in which

each part of the factor analysis may be interpreted in order to arrive

at a geologic model to account for the relationships among the variables

being studied.

The dimensions of the common factor space (the number of dimensions

in which the vectors lie), m, are determined from the successive eigen-

values. Ideally the first m eigenvalues are greater thai zero, whereas

succeeding eigenvalues are zero. Actually, due to random error in the

data (or conversely, to insufficient data) and to nonlinear relationships

disregarded in the factor analysis procedure, most of the n eigenvalues

will generally be greater than zero. However, if the vectors occupy

mostly m dimensional space, the first m eigenvalues will be notably higher
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than succeeding eigenvalues. The quantity m is interpreted as the mini-

mum number of independent geologic processes or factors that are required

to account for the covariances observed in the data. Departure of the

m + 1 and succeeding eigenvalues from zero results from processes or

factors that have had smaller effects on the data variation, from nonlin-

ear effects of the factors on the data, and from random data errors.

The communalities, he , of the variables are equal to the fraction

of variance in the corresponding variable that can be accounted for by

the factor solution; the quantity 1 - h_ is the uniqueness or the frac-

tion of the variance that is left unexplained. If Sej is the standard

error of measurement in the analytical procedure for a variable having

standard deviation s., then the quantity [s_(l - he)] ½ should equal or
J J

exceed that of s .. That is, the proportion of the variance accounted
ej

for by the factor solution should not be in excess of the proportion that

is real (that resulting from causes other than measurement error). The

proportion of the variance not accounted for by the factor solution or

by measurement error can be attributed to other sources of error, to the

effects of minor geologic processes or factors (such as those that have

affected only one variable or slightly affected a number of variables),

or to nonlinear components in the response of the variables to the

geologic processes or factors.

Although the positions of the reference axes may be entirely sub-

jective, both the number of axes, m, and the positions of the vectors

with respect to each other are derived objectively. After rotation into

suitable positions, the reference axes may provide a basis for construct-

ing a geologic model to account for the covariation observed in the initial

data. This begins the subjective part of the factor analysis procedure,

and is the part where geologic interpretation becomes important. Geologic

reasoning is important in selecting the best reference axis system and

in determining what geologic factors the axes are to represent. For ex-

ample, if one vector represents mean grain size, Z_, an axis FI, might

be rotated to coincide with this vector and named nearness to source area.

A second orthogonal axis, F2, then might be rotated to fall on a vector

representing the amount of authigenic muscovite, Z2, and named degree of
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points falling within clusters of others are not shown.
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diagenesis. A third vector--for example, one representing total feldspar

content, Zs--may lie in the plane of the other two, midway between the

two reference axes, a position indicating that this variable is controlled

by both nearness to source area and degree of diagenesis. Using the co-

ordinates of the vectors with respect to the rotated factor axes as coef-

ficients, one can write an equation for each variable to show its rela-

tion to the factors. These equations comprise the factor pattern, and

for the jth variable, have the form:

Zj = ajlF i + ajeF 2 + ajsF3 ... ajmF m. (II)

The factor pattern for the example cited above would be:

ZI = (i) _ + (0) F2

Ze = (0) FI + (i) F2 (12)

Za = (0.7)F I + (0.7) F_

The values of a (in parentheses) are the loadin_s or projections of the

three vectors on the factor axes and are identical to regression weights.

Each variable, as well as each factor, is expressed in normalized form

(as units of standard deviation from the mean). Using any uncorrelated

sets of N values each for FI, Fe, F3, ... Fm, an N x n matrix of values

may be generated which will contain nearly the same relations among

columns as observed in the data from which the loadings, a, were derived

(if all communalities are close to I).

The interpretation of the factor axes may be easy where variables

included in the study are known to be strongly controlled by specific

factors--otherwise interpretation may be difficult. Where the factors

believed to have been important are not independent, the reference axes

should not be orthogonal. If the factors are closely allied (as, for

example, fracturing and mineralization) the angle between the axes repre-

senting them should be small. Where the processes are almost perfectly

correlated (as, for example, fracturing and faulting), they may be repre-

sented by a single axis.

The factor pattern, then, comprises a mathematically expressed
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geologic model that can account for the covariation observed among vari-

ables in the data studied. The model, of course, is not unique; it is

only one of any number of equally sufficient models that could be pro-

posed. Factor models are, in a sense, minimum models, for they 9xplain

covariation in as few terms as possible, ignoring any minor factors and

nonlinear effects that may be present; the underlying natural systems

may be complex, probably only rarely are they less complex.

Factor analysis of the bediasite data

As described previously, the factor analysis procedures commonly

begin with a matrix of correlation coefficients such as the r values in

table 2, although other measures of association or relatedness are also

used. It has been shown that the r values derived from a compositional

data array may be strongly affected by its numerical structure and that

a better measure of petrogenetic association is the departure of r from

its corresponding rm. An absolute measure of association, ro, which may

be called the adjusted correlation coefficient, is based on this depar-

ture in the following manner:

Zo = Z - Z (13)

m l+r
/ 1 + r _-] j / m'h-]

= _ 0.5 in q i- r "Sj- _ 0.5 in _\ i - r JJ (14)
m

2Z o
e - i

r =
o 2Z oe + 1 (15)

(Tables of Z for values of r are widely available. See, for example,

Fisher and Yates, 1953, p. 543 Values of r for the bediasite data are
o

given in table 2, and compared graphically with the corresponding r values

in figure 3. The value of r is a measure of the amount of correlation
o

between variables beyonu that with can be ascribed to the numerical

structure of the data, particularly the constant row sum (closure) and

the structure of the functional variables. Values of r can be meaning-
o

fully compared with zero; those derived from the bediasite data with

absolute value in excess of 0.44 are significant at the 95 percent con-

fidence level. As is clear from figure 3 and table 2, most correlations,
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r, have been adjusted to ro in a negative direction. Those involving

SiO2, however, became more positive.

The three correlation matrices in table 2 (r, rm, and ro) were each

processed through the factor analysis procedures (correlations involving

functional variables were not used); eigenvalues for the three matrices

are given in figure 2. The first eigenvalue from the rm matrix , where

correlation is due almost entirely to closure effects (only one factor),

is near 5; all successive eigenvalues are small. The corresponding eigen-

values for the r and ro matrices are very similar, indicating that in

this instance r is generally not greatly affected by closure. In each

case the number of dimensions, m, of the common factor space appears to

be 3, although arguments could be given for m = 2 or m = 5.

Whether m is taken as 2, 3, or 5, it is apparent from the eigen-

values plotted in figure 2 that the natural system which controlled com-

positional variations in the tektites need not have been highly complex.

Most of the covariation among measured variables could be accounted for

by two to five independent factors.

After rotation of three factor axes, according to the varimax method,

the 25 vectors were projected into a three-dimensional space. Most pro-

jected vectors were thereby reduced in length from unity to h, where h 2

is the derived communality of the respective variable. Values of h2 de-

rived using the ro matrix are given in table 1 (column i0). Those from

the r matrix are correspondingly similar. With few exceptions, the unique

portion of the variance for each variable is greater than the variance of

the analytical error (compare columns 9 and Ii, table i). The exceptions

(for variables 3, 9, 16) are not glaring and are attributed to estimation

errors in sj, Sej , and h 2. The total communality for the factor solution

is 0.70, indicating that 70 percent of the total variance in the bediasite

data can be accounted for by three independent geologic factors.

When the vectors are restored to unit length within the three-dimen-

sional con_non factor space their relative positions can be conveniently

displayed on a stereogram, a device well known to geologists. Stereograms

showing the vector positions indicated by the rotated vector coordinates

from the r and ro matrices are given in figure 4. The vector system
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Ni " • Cr \

m'+ Trr+

Fig. 4.--Stereograms showing vector orientations within three-

factor space, derived from the r (left) and ro (right) matrices

(table 2). Solid points are plotted on the lower hemisphere. Open

circles are plotted on the upper hemisphere.

Tn--

TT-- rr+

Trr'+

Fig. 5.--Stereogram showing vector orientations within three-

factor space with respect to new reference axes, derived from the ro

matrix. Solid points are plotted on the lower hemisphere. Open circles

are plotted on the upper hemisphere.
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derived from the r matrix has been rotated into a position roughly com-

parable to that of the vect_or system derived from the r matrix; thiso

renders the two systems more easily comparable. It is apparent from

figure 4 that here the effects of closure are not reflected to any large

extent in the rotated factor matrices.

Although the factor solutions from the r and r matrices are not
o

greatly different, we focused our attempts at geologic interpretation

on that from the r m_trix--bec_use this solution is b_sed on correlation
o

beyond that which can be ascribed to closure effects. The reference axis

positions derived directly from the varimax procedure (figure 4B) did not

prove subject to satisfactory interpretation, and the axes were further

rotated into the new positions shown in figure 5.

Selection of new positions for the reference axes (figure 5) was

based on consideration of factors that may have had important effects on

the bediasite compositions. Two kinds of factors seemed important: (i)

parent materials from which the bediasites were derived, and (2) proces-

ses that acted on the parent materials to alter their compositions during

tektite formation. The principal parent material is thought to have been

grossly similar, in bulk composition, to a granophyre or average "low-cal-

cium granite." This possibility is evident from a comparison of the com-

positions given in table i. It is not likely that this principal parent

material was of uniform composition; it undoubtedly varied at least

slightly from one locality to another due to slightly varying degrees of

magmatic differentiation. Another parent material likely to have been

important, if tektites are of lunar origin, is meteoritic matter which

may be widely and irregularly distributed on the moon's surface. Addition

to the principal parent material of meteoritic matter compositionally

similar to chondritic meteorites found on the earth could explain the com-

paratively higher concentrations of magnesium, iron, nickel, and other

basic elements in the bediasite specimens (table I).

Processes likely to have been important in altering tektite composi-

tions during their formation by meteoritic impact include volatilization

of selected elements and possibly the addition of other elements from

incorporation of the impacting body itself. The two processes are likely
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to have had highly correlated effects, each being more intense close to

the point of impact, and therefore cannot be distinguished as separate

factors. The compositional changes that would result are probably much
the sameas those that would be caused by assimilation of a basic rock

in a granitic melt--an increase in mafic componentsand a decrease in
silica and alkali metals.

With the factor axes rotated into their new positions, as shown in

figure 5, the geologic factors they represent can be interpreted in accor-
dance with those factors thought to have been important. Axis I is inter-

preted to represent incorporation of chondritic meteoritic material into

a principal parent material. This factor, then, is the dominant control

on variation in MgO, V, Ni, Rb, _ , Li, Ga, and Cr contents of the bedi-

asites and also has important effects on their refractive indices, specific

gravities, magnetic susceptibilities, and iron contents. The vectors rep-

resenting all these variables have high to moderate positive projections

on axis I (figure 5).

Axis II is interpreted to represent nearness to _oint of impact, or

a combined factor representing volatilization and addition of material

from the impacting body. The negative correlation of this factor with

K_O, NaeO , CaO, SiO2, and Sr is considered to reflect the effects of

volatilization, even though not all these elements are regarded as parti-

cularly volatile when present as oxides or silicates. The order of vola-

tilization for the major elements in the D-C arc, as given by Ahrens and

Taylor (1961, p. 82), is as follows: Na, K > Mn > Si, Fe > Mg > AI,

Ca > Ti. Two of the more refractory elements, TiO e and AI 2_ , have high

positive projections on axis II and may be enriched in the bediasites on

volatilization of less refractory constituents. Other constituents, such

as FeO, Cr, and F%_, may be enriched in the specimens from nearer the

point of impact by addition from the impacting body. The presence of

meteoritic iron in tektites from other areas seems evident from studies

by Chao and others (1964). The absence of a high positive projection of

the nickel vector on axis II cannot be fully explained at present. As

pointed out previously, the nickel content of the bediasites, according

to the model presented here, is controlled largely by the addition of
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chondritic material. In any case, the iron and nickel contents of the

bediasites are not highly correlated (table 2) and probably were controlled

mostly by unrelated geochemical factors.
_a_vrAs to its control on compositional variabillty, the geologic # _+_

represented by axis III is the least important of the three-factor model.

None of the vectors in figure 5 lies particularly close to this axis, al-

though manyof them have moderate projections on it. The axis is inter-

material, as reflected by the relative sparsity of such accessory minerals

as biotite and amphibole. According to this model, variation in the

degree of differentiation was not extreme over the bediasite source local-

ity, but did exhibit some control on variation of such constituents as

Be, Mn, Sr, SiO_, and others to a lesser extent. Most basic constituents

have minor to moderate negative projection on axis III, whereas SiO_ and

a few other elements have positive projections on this axis.

The model proposed here, therefore, includes three independent

geologic factors. The distribution of meteoritic debris on the lunar

surface is almost certainly independent of the degree of differentiation

that has taken place in the rocks on which it occurs, and neither of these

factors is expected to have any bearing on the degree of alteration in the

materials with volatilization or enrichment on meteoritic impact. Most

basic constituents in the bediasites, as well as the three physical

property variables, are related positively to the impact and chondritic

material factors, and negatively related to the differentiation factor.

The interpretation of the factor axes seems reasonable in view of what

is now known about tektite formation, and the response of the variables

to the interpreted factors, as shown in figure 5, is for the most part

consistent with the known properties of the elements in terrestrial rocks

and meteoritic materials. However, these interpretations are subject to

change when more is known of lunar geologic conditions and the processes

that lead to tektite formation. More important here is the fact that the

three-factor model is sufficient to account for approximately 70 percent

of the variation in the bediasite compositional data; much of the remain-

ing 30 percent can be attributed to analytical error. Thus, a rather few

39



geologic processes are adequate to explain the seemingly complex relations

amongvariables as indicated by the correlations listed in table 2.

Concludin_ remarks

The attention that Chayes (1960, 1962, 1964) has given to the closed

array problem in petrology has resulted in both an awareness of the prob-

lem and a basis for empirical solutions. Our treatment was possible be-

cause it was rather easy to construct arrays of random deviates adjusted

to have the same mean, variance, and closure properties as the data we

were studying. This may not always be possible, but the extension of

Chayes' basic technique, given in equations (3) through (7), should be

generally useful for this purpose, especially where nonnegative solutions

to (7) exist.

In attempting to assess the effects of closure it is natural to

think in terms of open variables that have been forced into a closed array

because it is customary and meaningful for us to do so. This trend of

thought is difficult in most all problems and may be a futile effort.

According to Chayes, Sarmanov and Vistelius (1958) assumed the existence

of an underlying system of open variables, but Chayes (1960, p. 4189) him-

self questioned the necessity for such a system. The entire concept of

underlying open variables is highly elusive.

Whether the system of equations in (7) has solutions that are entirely

positive seems deserving of careful consideration with respect to the ex-

istence of underlying open variables. Negative variances derived from

(7) indicate that there can be no open array that will yield on closure

the exact means and variances observed in the real data. Whether this

observation has any geologic significance is uncertain. The problem must

receive much more study.

Testing of individual correlation values against corresponding values

that resulted almost solely from the effects of closure enabled us to

assess the degree of petrogenetic association required to account for each

observed correlation. It is possible to determine whether the effects of

closure alone could account for the correlation. However, we are not

sure that the problem is this simple. The fact that closure could account
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for a correlation is, by itself, no adequate assurance that it did,

especially where the open variables cannot be defined in a petrologic

sense. On the other hand, we are certain that the necessary practice of

collecting geochemical data on a unit weight basis imposes restrictions

on its variability. Removal of these restrictions through derivation of

adjusted correlation coefficients allows us to examine an underlying

system of open variables, even though the system may be entirely concep-

tual. There is no doubt that h_ghly positive or highly npg_tivp v_u_s

of r derived directly from the original data do not necessarily indicate

petrogenetic association, regardless of whether underlying open variables

can be defined petrologically.

These rather obscure considerations may raise questions regarding

the meaning and importance of the r values derived by adjusting the
o

original correlation coefficients for estimated effects of closure. It

probably would not be proper to refer to r as an estimate of correlation
o

in an underlying system of open variables; it certainly cannot be strongly

defended at this time. The r value should be regarded as a measure of
o

correlation beyond that to be expected from the numerical structure of

the data; it can be compared directly with zero in order to interpret

the probable degree of petrogenetic association among variables• In this

context then, the r matrix, rather than the original r matrix, was in-
o

terpreted after the factor solutions were derived. It was shown, however,

that although many of the r values differ quite markedly from corres-
o

ponding r values, the factor solutions in general were not greatly

different.

The apparently large effects of closure on some of the correlations

involving minor chemical constituents was not anticipated. The minor

elements were represented in the simulation studies because they are not

clearly distinct from the elements regarded as major; the distinction

made in table i is entirely arbitrary. Also, some of the minor elements

are included in the functional variables. The suggested use of the rela-

tive standard deviation as an approximate indication of the degree to

which correlations involving the variable are affected by closure deserves

and needs further study.
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It is important in this respect to note the importance of relative

standard deviation in closure effects. Each array of closed random devi-

ates, having specific column means and variances and intercolumn corre-

lations, may be regarded as having originated from any member of a family

of open arrays. The arrays within the family may be identified by the

subscript k, where the members are Xijk= I, Xijk= 2, Xijk= 3 ... ie is

necessary that:

m _ m

Xjk=l = AIXjk=2 = A2Xjk=3 ...

and that (16)

= A 2 2 2 2
S_k=l iSjk=2 = A2Sjk=3 ...

Corresponding means among the arrays must differ by a constant, A, and

corresponding variances must differ by A2. This can be shown from equa-

tions (30) and (31) of Chayes (1960, p. 4192). The significance of these

requirements here is that they impose the condition that each member of

the family of open arrays has, column for column, identical relative

standard deviations. Open arrays with other relative standard deviations

will yield, on closure, different correlations between columns. Thus

relative deviations among columns determine the closure effects, though

how or if the closure effect can be predicted from relative deviations

in either the open or closed arrays is unknown.

A few petrologists have argued that compositional data arrays are

not closed, because analyses generally add to some variable quantity

commonly between 99 and i01 percent, rather than to i00 percent exactly.

This objection actually has little bearing on the problem; the true

values being estimated do add to i00 percent exactly, and the true cor-

relations are undoubtedlyaffected by this constant sum. Small errors

in the compositional data cause the sums to deviate slightly from i00,

and have only slight effects on the estimated correlations. In any case,

where the data errors relative to the variances are about equal among

variables, all the correlations among variables, both major and minor

elements, are affected to a similar degree.

The factor model presented to account for variations in the bediasite

compositional data is highly tentative, and additional consideration and
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appraisal of the bediasite data is definitely intended. Wehope to study

other tektite data anlayzed by the U.S. Geological Survey laboratory by

this and similar techniques of multivariate analysis. An entirely satis-

factory model can be derived only after this has been done.
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SIMILARPETROCHEMICALGROUPINGSOFBEDIASITES

ANDAUSTRALASIANTEKTITES

by Donald B. Tatlock

A large part of any reasonable hypothesis of tektite derivation
depends u_i = systematic .................puLLou_z_m_ua_grouping of tektites based on

major-element compositions. To my knowledge, no such grouping has

been published, although since 1897more than 200 analyses of
bediasites and Australasian tektites have appeared in the literature.

In collating analytical data for this paper, 49 older analyses

compiled by Barnes (1940) and 8 compiled by Schnetzler and Pinson

(1963) have been rejected because of probable inaccuracies, relative

to modernanalyses, in one or more of the following: Ca0, Mg0

(Cuttitta and others, 1962; Schnetzler and Pinson, 1963); Na20, K20,

and Ti02 (Tatlock, 1964). It is also probable that in these older
analyses several Mn0and total iron determinations are inaccurate.
Consequently, only those analyses published since about 1960 and known

to have been precisely monitored with recognized analytical standards
such as G-I and W-I are used. These include 116 complete and 12 partial

analyses of Australasian tektites (16, Barnes, 1964; 16 Cuttitta and

others, 1964a; 18, Cuttitta and others, 1964b; 34, Schnetzler and Pinson,

1964; 24, Taylor, 1962; 19, Taylor and Sachs, 1964; I, Wilford and Barnes,

1964) and 23 complete analyses of bediasites representing a wide range

in specific gravity and refractive index (22, Chao, 1963; and I,

Schnetzler and Pinson, 1963). Oneunpublished analysis of a javanite

(specimen JS-71, specific gravity 2.558, DeanR. Chapmanand Frank

Cuttitta, written communication, 1965) is also used in this paper.

A study of these modern analyses strongly suggests that bedia-

sites and Australasian tektites are derived from chemically unaltered

igneous materials, and not from sediments or any randommixture of

terrestrial materials, as hypothesized by Barnes (1940), Taylor and
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Sachs (1964), and manyother workers. Both tektites and any differ-
entiated series of salic igneous rocks, when comparedwith sediments,

display:
(i) a highly significant positive correlation of AI203 with Ti02,

of MgOwith total iron as FeO, and, except for javanites, of

both AI203 and TiO2 with (FeO+ MgO);
(2) a highly significant negative correlation of Si02 with Ti02,

A1203, and (Fe0 + Mg0); and
(3) similar significant trends and restricted fields on commonly

used petrologic ternary diagrams (fig. I).

While any differentiated series of chemically unaltered salic igneous

rocks (i.e., rocks that display no evidence of hydrothermal altera-
tion of intense chemical weathering) will showall three of these

characteristics, sedimentary materials (fig. 2) and altered igneous

rocks do not.

Analyses of bediasites and Australasian tektites differ in some

respects, however, from those of a differentiated series, but at the

sametime they display certain features characteristic of a unit of

restricted compositional range (i.e., an igneous unit derived during

a single magmatic event from a given melt) within an igneous series.
These characteristics are:

(I) a narrow range in ratio of K20 to Na20 (figs. 3 and 4);

(2) a nearly constant ratio of AI203 to Ti02 (which is about
17:1 in both bediasites and Australasian tektites);

(3) a relatively small range in ratio of Mg0 to total iron as

Fe0 (this ratio does increase, however, with increasing

(FM)O); and

(4) a narrow range in MnOwhose standard derivation is less than

0.012 percent.

Again, to my knowledge, no units (i.e., formation, group, or series)

of sedimentary materials or of altered igneous rocks display all of
these characteristics. Amongfive sedimentary units I have investi-

gated so far (Bailey, Irwin, and Jones, 1964; Murata and Erd, 1964;

Reed, 1957; Sweeneyand Hamlin, 1965; and Tourtelot, 1962), and for

| °
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Fig. l.--Commonly used ternary diagrams showing variation in 23

bediasites, 33 indochinites, and 84 australites-philippinites-javanites,

compared with a granitic series from Pershing County, Nevada (unpublished)

and from the Sierra Nevada (Bateman, 1961). Open diamonds show average

hypersthene-bearing granite, hypersthene-bearing adamellite, and hyper-

sthene-bearing granodiorite of Nockolds (1954). Solid diamonds are

reconstituted tektites as described in text.
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Fig. 2.--Commonly used ternary diagrams showing variation in (I)

25 graywackes, Franciscan Formation, Calif.; (2) 34 late Tertiary sedi-

ments from experimental mohole, Guadalupe site; (3) 8 graywackes and 7

shales from Wellington area, New Zealand; (4) 20 shales, Illinois; (5)

22 Pierre Shale and (6) 7 graywackes and quartzites, Henbury, Northern

Territory, Australia. Compare with figure i.
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Fig. 3.--Variation of K20 with Na20 in 23 bediasites compared with

the variation in some late Tertiary to Recent volcanic rocks. Open

circles are tektites from Georgia and Martha's Vineyard. Solid diamond

is reconstituted bediasite. Open diamonds are average hypersthene-

bearing granitic rocks of Nockolds (1954).
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Fig. 4.--Variation of K20 with Na20 in 129 Australasian tektites

compared with variation in 30 rocks of a granitic series in Pershing

County, Nevada. Arrow marks trend of changing alkali ratio in tektites.

Solid diamonds are reconstituted indochinite and austral-philippinite.

Dashed straight lines show maximum and minimum alkali ratios.
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each of which a minimum of 15 modern analyses is available (report in

progress), none displays all of the three characteristics that tektites

have in common with a differentiated series of salic igneous rocks,

or the four they have in common with an igneous unit of restricted

compositional range within a series.

Analyses of bediasites and Australasian tektites do differ,

however, from those of terrestrial igneous rocks, whether of a series

or of a unit within a series, in that they display:

(i) a wide range in Si02, AI203, (FM)0, and Ca0, while maintain-

ing a nearly constant ratio of AI203 to Ti02 and a narrow range

in alkali ratio (as well as low total alkali);

(2) a highly significant positive correlation of K20 with Na20

and, in Australasian tektites, a distinct increase in ratio

of K20 to Na20 with decreasing total alkali (fig. 4);

(3) an extremely wide range in AI203 - (Ca0 + Na20 + K20)

reflected as normative corundum or wollastonite--a range

greater by an order of magnitude than is generally found

in unaltered salic igneous units;

(4) an excessively high silica content relative to total

(Fe0 + Mg0 + Ca0); and

(5) compared to a differentiated igneous series, no significant

correlation of Ca0 with Si02, AI203, or (FM)0.

Points 3, 4, and 5 are among the chief facts used by some investi-

gators to hypothesize a sedimentary origin for tektites.

Except, possibly, for the poor correlation of Ca0 with various

constituents, all 12 of the above-mentioned characteristics of tek-

tites (i.e., three common to a differentiated series, four common to

a unit of restricted compositional range within a series, and five

different from igneous differentiates) are seemingly compatible with

the hypothesis that tektite compositions result from the alteration

of an igneous source material of rather restricted compositional range

by some sort of "fusion (or volatilization) differentiation" (Chao,

1963; Walter and Carron, 1964), resulting, probably, from meteoritic

impact (Walter, 1965) on the moon (Chapman and Larson, 1963).
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Someof the similarities as well as differences between tektites

and igneous rocks are shownin figures 1-6, in which solid diamonds

indicate the average normal bediasite, indochinite, and austral-
-- _ ,=_ been added (andphi!ippinite (fig. 7) to which sufficient alkali _

the analyses normalized) to approximate that contained in hypersthene-

bearing terrestrial salic igneous rocks. The average hypersthene-

bearing granite, hypersthene adamellite, and hypersthene granodiorite

ternary plot Q:Or:(Ab + An) (fig. la), the elongate fields of bedia-

sites and Australasian tektites are subparallel to those of a differ-

entiated series of terrestrial igneous rocks, chiefly because of their

low alkali content, which allows for high excess silica (normative

quartz). In figure ib the fields of normative feldspar proportions

of tektites are, again because of low alkali content, subparallel to

the field of a differentiated series. Figure Ic shows the tendency

for the alkali oxides to decrease with increasing FeO and Mg0, just

as in igneous differentiation trends. However, the rate of increase

in ratio of Mg0 to Fe0 with increasing total (FM)0 tends to be less

in tektites than in igneous differentiates, and a narrow range in

alkali ratio is maintained. In the three ternary plots discussed so

far, the similarities in trends in igneous rock differentiation and

in tektite "differentiation" are clear. The same plots of sedimentary

rocks (fig. 2) invariably show greater scatter and no well-defined

trends.

Figure 5 emphasizes the wide range in AI203 - (Ca0 + Na20 + K20 )

found in tektites relative to that in unaltered salic igneous rocks.

It emphasizes also the narrow range in ratio of K20 to Na20 which

closely matches that of individual units of unaltered igneous rocks

(figs. 3 and 4). In figure 5 all analyses of bediasites plot in the

so-called argillic field, which suggests that, if bediasites were to

crystallize in the presence of water, all K20 would be contained in

mica, which would make up at least 20 percent of the average crystal-

lized bediasite; there would be no k-feldspar, and excess alumina

would occur as kaolinite or andalusite. If, however, sufficient alkali

(presumably lost by volatilization) were added to the average bediasite
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to use up all excess AI203 while maintaining the original alkali ratio,

the resulting analysis recalculated to i00 percent would closely match

the average hypersthene-bearing granite of Nockolds (1954). In this

regard it is of interest that the range in the quantity AI203 - (CaO÷

Na20+ K20) is the samein both bediasites and Australasian tektites,
and, as mentioned earlier, nearly an order of magnitude greater than

in a given unit of unaltered salic igneous rock. This, combinedwith

the narrow range in ratio of K20 to Na20 and of AI203 to Ti02, further

suggests a similarity in genesis of tektites of widely different age.

In summarythus far, we can say that both tektites and igneous
rocks display marked regularity in trends and remarkably little scatter

on various petrochemical plots; sedimentary rocks do not. While it

maybe true that average compositions of certain sedimentary units

closely approach the composition of tektites, plots of individual
analyses comprising the averages tend to display wide scatter, a fact

not emphasizedby those who hypothesize a sedimentary origin for tek-

tites. Furthermore, features that distinguish tektite analyses from

those of igneous differentiates, as well as the characteristics that
both have in common,are all compatible, a priori, with the hypothesis

that tektites are derived from an unaltered igneous source material

of restricted compositional range by volatilization differentiation

(Chao, 1963).

A petrochemical grouping of tektites for hypothesizing genesis

Considering the seemingly erratic behavior of Ca0 with respect to

Fe0 and Mg0 in tektites, the wide range in AI203 - (Ca0 + Na20 + K20)

and in (FM)0, and the narrow range in ratio of the alkalis, any vola-

tilization differentiation trends, as opposed to magmatic trends, should

be discernible on an ACF plot which considers all major constituents

except Si02.

In figure 6, the plots of 117 analyses of Australasian tektites

and of 23 bediasites are compared on an ACF diagram with those of 30

plutonic rocks ranging from diorite to granite, and with some hyper-

sthene-bearing granitic rocks of Nockolds (1954). The tektites display
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remarkably little scatter, and compositional trends, especially in the

bediasites, are not readily apparent. The trend of the Australasian

tektites is obviously different, however, from that 0f terrestrial

igneous differentiates. If the ACF plot is modified as in figure 7, with

F as the ordinate and the ratio of C to A as the abscissa, then distinct

chemical groupings, and trends within each group, become apparent.

In figure 7, of the 117 complete analyses of Australasian tektites,

115 fall into six major groups. The three groups with ratios of C to A

ranging from about 0.35 to 0.55 consist entirely of indochinites (includ-

ing thailandites). These I have termed (i) high FM, (2) normal, and (3)

low alumina indochinites. The remaining three groups of Australasian

tektites, all having higher ratios of C to A than the indochinites, I

have termed (i) high FM, (2) normal, and (3) low alumina austral-philip-

pinites. The low alumina group has been subdivided into a peraluminous

group (over-saturated with respect to alumina) and a metaluminous group

(undersaturated). Similarly, the high FM group has been subdivided on

the basis of (FM)0 content. The high FM group consists of nine javanites

and one Brunei tektite. The normal group consists of 16 australites and

30 philippinites, and the low alumina group, of 25 australites and i

philippinite. The bediasites, with a very low ratio of C to A (very

high normative corundum), display a similar pattern of high FM, normal,

and low alumina groups.

Among the Australasian tektites, the two low alumina groups tend

to display a regular transition from one to the other (figs. 7-9).

Tektites belonging to the normal austral_philippinite group are distin-

guished from those of the low alumina groups in having (AI203 - Ca0) >

0.060 (molecular amount) and (FM)0 > 0.i00; they are distinguished from

normal and high FM indochinites in having Ca0 > 2.40 percent, and from

high FM austral-philippinites (javanites) in having (FM)0 < 0.140 while

AI203 exceeds 12.00 percent. The two high FM groups tend to have low-

er Ca0 and higher Mg0 than their respective normal groups. Furthermore,

javanites have a higher Ca0 content than do the indochinites; and for

this reason it is probable that they are chemically more nearly related

to austral-philippinites than to indochinites. One australite from

Lake Wilson and one philippinite from Isabella (fig. 7) may possibly

mark a group that is transitional between low alumina and high FM
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austral-philippinites; it is somewhat surprising that more analyses do

not plot in this part of the diagram.

Several plots other than the modified ACF plot of figure 7 show

similar grouping patterns among bediasites, indochinites, and austral-

philippinites. These include (FM)O versus CaO (fig. 8), AI203 versus

(AI203 - Ca0), AI203 versus (FM)0, and (FM)O versus (AI203 - CaO).

However, the modified ACF plot effects the best separation of groups

while utilizing all major constituents except SiO 2. In figure 9,

plots showing the variation of SiO 2 with Ca0 in bediasites and Austral-

asian tektites are compared. Again, the similarity in grouping patterns,

especially of the low alumina and normal groups, is striking.

The normal sroups

The three normal groups of bediasites, indochinites, and austral-

philippinites are marked by small standard deviations of all major con-

stituents, equivalent to the deviations calculated from groups of analy-

ses of unaltered igneous units such as, for example, an ash-flow sequence

of quartz latitic composition. Tektites belonging to the normal groups

are probably only slightly "differentiated" with respect to their igneous

source material, and except for low total alkali (but higher than in

the low alumina and high FM groups) and hence somewhat too high silica,

are just within the realm of igneous products as we know them terrestrially.

All three normal groups have a similar, relatively wide range in

normative corundum (excess alumina). The normal bediasite and austral-

philippinite groups display a highly significant negative correlation

between normative corundum and total alkali oxide, thus supporting the

hypothesis that the alkalis have been volatilized relative to aluminum.

This correlation is not as highly significant in the normal indochinites,

but will probably become so as more indochinites (and thailandites)

displaying a wider range in specific gravity and refractive index are

analyzed. Among altered terrestrial igneous rocks, a wide range in

normative corundum (or excess alumina) is most commonly a function of

differential loss of alkalis through leaching (hydrothermal alteration),

and a wide range in alkali ratios invariably results. In tektites,
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alkali ratios display a remarkably narrow range; and aluminum, of course,

is presumably less volatile than the alkali metals.

Iron and magnesium,possibly amongthe least volatile of major

constituents, must also be considered in any hypothetical volatiliza-

tion differentiation process. In all three normal groups we find a

significant negative correlation between AI203 - (Ca0 + Na20+ K20) and
the ratio of GNa20 + K20 ) _n C_M_n An ..... more s_s .......... negative

......... _ _s u_p_dyeu in the normal austrai-phiiippinites if norma-

tive corundum (excess alumina) is plotted against the ratio of Na20 to

Mg0, presumably the most and the least volatile constituents, respec-

tively (fig. I0). In figure ii, the variation of normative corundum

with respect to the ratio of (Na20 + K20 ) to (FM)0 in the normal (as

well as in the low alumina, and high FM) group of bediasites is shown.

In each of the correlations cited, except for the indochinites,

there is less than 1 chance in i000 that correlation would arise by

chance. It should be stressed that in unaltered terrestrial igneous

rocks, in contrast to tektites, the correlation of AI203 - (Ca0 + Na20

+ K20) with total alkali (and with alkali/(FM)0) is positive.

The high FM groups

The high FM austral-philippinites (javanites) display a wide

range in Si02, (FM)0, and (Na20 + K20), and a tendency toward a higher

ratio of K20 to Na20 with increasing (FM)0 and decreasing total alkali.

Alumina and Ca0 tend to show an irregular increase with increasing (FM)0.

The group can be divided petrochemically on the basis of (FM)0

content into two subgroups (java I and java II, fig. 8), which are re-

flected in the population polygons of specific gravity for java tek-

tites(Chapman and others, 1964). The java I group seems to bear the

same relationship to the normal austral-philippinites that the high FM

indochinites bear to normal indochinites. Both are marked by low de-

viations of all constituents, and by lower Ca0 and A1203, and higher

(FM)0 (chiefly as a function of increased Mg0) than their respective

normal groups. Javanites, however, do have a higher Ca0 content and

a higher ratio of Mg0 to Fe0 than do high FM indochinites. In these
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respects the javanites and high FM indochinites parallel their re-

spective normal groups. Because of this parallelism it is probable

that javanites are not related to the indochinites, as has been sug-

gested by Cuttitta and others (1964b) on the basis of ratios of Cr
to Ni.

The three analyses of high FMbediasites show decreasing Si02,

(Na20+ K20), and CaOwith increasing (FM)0, as do the Australasian
high FMgroups (except for java II). They differ from the latter,

however, in showing a more.regular increase in AI203 with decreasing

Si02 and increasing (FM)O.

The low alumina groups

The low alumina austral-philippinites display significant negative

correlations between silica and all other major constituents including

Ca0 (fig. 9). The low alumina bediasites, on the basis of only six

analyses, also tend to display these correlations. The low alumina

indochinites cannot be intelligently discussed until more indochinites

displaying a wider range in specific gravity and refractive index are

analyzed.

Why the low alumina groups should trend at nearly right angles to

the trend of the normal and high FM groups(fig. 7) is not yet clear to

me. In both the low alumina bediasite and austral-philippinite groups,

CaO passes through a twofold increase. It has been suggested by Taylor

(1962) and Taylor and Sachs (1964) that the high CaO content of some

australites (low alumina austral-philippinites) results from contamina-

tion with a Ca0-rich material. This I discount because: (i) If mixing

with relatively pure limestone had taken place, we should expect a de-

crease in (FM)0, AI203, and (Na20 + K20) in the metaluminous group rel-

ative to the low lime peraluminous group (fig. 7); actually a signifi-

cant increase is seen in (FM)0, and a slight increase in AI203 and

(Na20 + K20 ). (2) If contamination resulted from mixing with an

anorthite-rich material (anorthosite, for example), we should expect

a substantial increase not only in Ca0, but also in AI203 and Na20,

with a consequent decrease in (FM)O and in the ratio of TiO 2 to AI203

and of K20 to Na20. The same arguments with regard to mixing obtain
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for the low alumina bediasites in which Ca0displays significant posi-

tive correlation with (FM)0, A1203, and (Na20+ K20).
The similarity in trends (figs. 7-9) of the low alumina groups

in both bediasites and Australasian tektites suggests that some funda-

mental process, possibly of "volatilization differentiation," is at

work; it would be fortuitous if contamination with Ca0 had affected

tektites of widely different age and composition in so similar a manner.

Judging from the similarities in grouping patterns amongbediasites,

indochinites, and austral-philippinites (including javanites) (fig. 7),

it might be hypothesized that Australasian tektites were derived from
two similar but distinct igneous source materials, both included in a

single lunar impact area. However, a detailed discussion of the var-

ious groups must be reserved for a more comprehensive paper in which

individual analyses are presented.

Geosraphic distribution of the various

Australasian petrochemical groups

The petrochemical groupings of Australasian tektites (fig. 7)

tend to parallel the different compositional populations found in var-

ious areas of Australasia. The locations and petrochemical groupings

are cross-referenced in figures 12 and 13. Included in this discussion

of geographic distribution are nine partial analyses, three of which

belong to the normal group of austral-philippinites and six to the

low alumina group. Three partial analyses could not be grouped without

a knowledge of their alumina content, and no location is given for one

metaluminous australite analyzed by Schnetzler and Pinson (1964).

The petrochemical groupings tend also to parallel the population

spectrums of tektite specific gravity in the various areas (Chapman

and others, 1964). Thus, a wide spectrum for both specific gravity

and chemical make-up are found in tektites extending from the Vic-

toria area to the Charlotte Waters area in Australia. Twenty-six of

the 29 analyzed tektites from this area plot in the low alumina group

of austral-philippinites. A further breakdown of this area reveals

that in the Charlotte Waters area 12 of 18 tektites belonging to the

low alumina group are metaluminous (fig. 7); the remaining six are
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peraluminous while only one is normal, thereby possibly accounting in

large part for the two rather distinct population polygons of specific

gravity for the Charlotte Waters area (Chapman and others, 1964).

Similarly, the relatively wide range in chemical make-up of the

javanites is reflected in their wide spectrum of specific gravity; here,

as at Charlotte Waters, two distinct populations are revealed. In Java,

h_ever, the wide spectrum is probably chiefly a function of wide range

in (FM)0 and Si02, whereas at Charlotte Waters it is chiefly a function

of wide range in Ca0 and Si02.

Probably the most convincing evidence regarding correlation be-

tween chemical composition and specific gravity is provided by the al-

most identical chemical compositions and population polygons of specif-

ic gravity (Chapman and others, 1964) for tektites in the Kalgoorlie

area of western Australia and in the Philippine Islands. In both these

areas the vast majority of analyzed tektites belong to the normal group

of austral-philippinites, although both populations also contain some

belonging to the low alumina group.

Among the indochinites, we find that all those belonging to the

high FM group seem to be confined to a narrow zone extending from South

Vietnam, through the island of Hainan, and onto the southeast coast of

China (fig. 12). Included in this area, also, are six normal indochi-

nites containing somewhat higher (FM)0 than the normal indochinites

found in Thailand. These six (fig. 7) I have tentatively termed the

"Dalat-type normal" indochinites; they may bear the same relationship

to normal indochinites that java I tektites bear to normal austral-

philippinites, inwhich case the high FM indochinites would be the

counterpart of java II tektites. The "Dalat-type normal" indochinites

probably contain considerably more Cr and Ni than do the remaining

normal indochinites.

Some normal austral-philippinites have compositions that are tran-

sitional toward high FM indochinites (fig. 7). This has been suggested

also by the specific gravity studies of Chapman and others (1964).

Similarly, one australite from Lake Wilson and one philippinite from

Isabella seem to mark a possible transitional group between metaluminous
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low alumina austral-philippinites and high FM (java I) austral-

philippinites. Transitional compositions might also be hypothesized

between low alumina indochinites and peraluminous low alumina au_tral-

philippinites.

Summary and conclusions

Modern major element analyses of bediasites and Australasian tek-

tites strongly indicate a derivation from chemically unaltered salic

igneous material of narrow compositional range, by a process of vola-

tilization differentiation. Both tektites and terrestrial igneous

rocks display highly significant correlations among various pairs of

major constituents; these correlations, as a group, are not found in

sedimentary units or among altered igneous rocks. Moreover, tektites

maintain a remarkably small range in ratio between K20 and Na20, AI203

and Ti02, and (relative to igneous rocks showing a similar range in

(FM)0) between Mg0 and total iron as Fe0; they display, also, a small

range in Mn0. These features, as a group, are not characteristic of

sedimentary units, but they are characteristic of a given igneous

unit within a differentiated series of unaltered salic rocks.

Tektites differ from igneous rocks, however, chiefly in their

(i) wide range in the quantity AI203 (Ca0 + Na20 + K20); (2) highly

significant positive correlation of K20 with Na20; (3) wide range in

(FM)0 and Si02 while maintaining a narrow range in ratio of K20 to

Na20 and of AI203 to Ti02; and (4) in having a seemingly erratic Ca0

content, especially in australites and bediasites. These character-

istics make possible, on a modified ACF plot (fig. 7), an effective

separation of bediasites, indochinites (including thailandites), and

austral-philippinites (including javanites) into three similar grouping

patterns, each of which is made up of a high FM, a normal, and a low

alumina group. The similar grouping patterns suggest that indochinites

and austral-philippinites were derived during a single fusion process

from two igneous source materials, differing only slightly in com-

position, and contained in a single lunar impact area.

The three normal groups, which probably account for most of the
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tektite material on earth, are marked by small standard deviations of

all constituents, and, except for low total alkali (and hence, some-

what too high silica), closely parallel the compositions of terrestrial

hypersthene-bearing salic igneous rocks. In the normal groups, the

quantity AI203 - (Ca0 + Na20+ K20 ) displays significant negative cor-

relations with total alkali and with the ratio of alkali to (FM)O,

suggesting that volatilization differentiation has played an important

role in the derivation of tektite compositions. As significant vola-

tilization of alkalis seems possible only at very low partial pressures

of oxygen (Walter and Carron, 1964), a lunar source is probable. Con-

sidering the heterogeneity of the earth's surface, the great volume

of rock involved in a major impact event, and the random nature of any

fusion process, and also considering the regularities and similarities

in "differentiation" trends among tektites in two strewn fields of

widely different age, it is improbable that the source material of tek-

tites was terrestrial.

The geographic distribution of the high FM, normal, and low alumina

groups of Australasian tektites shows there are three distinct chemical

types (or fusion differentiates) on the Indochina peninsula, two in Java,

two in the Philippines, and three (possibly four) in Australia. The

compositions of tektites in the Kalgoorlie area of western Australia are,

for the most part, indistinguishable from those in the Philippines.

These findings are, in general, substantiated by the specific gravity

studies of Chapman and others (1964). If it were possible to thoroughly

sample and analyze tektites that were strewn into the ocean areas of

Australasia, it is probable that many transitional types would be

found to plot among the distinct groupings of figure 7.
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ABUNDANCESOFSO_[ELITHOPHILEELEMENTS

IN BASALTICMETEORITES,HYPERSTHENEACHONDRITES
ANDDIOPSIDEACHONDRITES

by Michael B. Duke

Introduction

Minor-element contents have been determined by optical emission

spectroscopy for whole rocks, separated plagioclase and pyroxene from

several basaltic meteorites, hypersthene achondrites and diopside

achondrites. These data and published minor-element data for basaltic

meteorites (eucrites, howardites, and the silicate phase of many meso-

siderites) show variations as functions of the major variable Fe/Fe +Mg

that are consistent with an origin by magmatic differentiation as pro-

posed by Duke (1963) and Duke and Silver (in preparation). For all

elements studied but the alkali metals, the minor-element abundances in

basaltic meteorites with Fe/Fe + Mg < 0.3 seem similar to chondrites

(Fe/Fe + Mg_ 0.2), whereas basaltic meteorites with Fe/Fe + Mg > 0.5

show marked differences of many minor-element concentrations with respect

to chondrites. Some compositional properties of the basaltic meteorite

parent material are inferred from these data.

Minor-element contents of pyroxenes from two hypersthene achondrites

are similar to the basaltic meteorite pyroxenes, where_s the pyroxenes

of a diopside achondrite and the Sherghotty basaltic achondrite are dis-

tinct, especially in their contents of siderophile elements.

New emission spectro$raphic data

New emission spectrographic analyses of separated plagioclase and

pyroxene and of total meteorite samples are given in tables 1-3. The

analyses were made in two laboratories: the spectrographic laboratory

of the Division of Geological Sciences of the California Institute of

Technology, E. Bingham, analyst, and the spectrographic laboratory of

the U.S. Geological Survey in Washington, D.C., J. D. Fletcher, analyst.
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Each sample was run at least twice in both laboratories, and several

duplicate samples, unknown to the analysts, were submitted as checks on

the analytical precision. Standards prepared by mixing known amounts of

oxides with a "pegmatite mineral" matrix consisting primarily of quartz

and feldspar, which is a good approximation to the silicate matrix of

the samples, were run on the same spectrographic plates as the samples.

Line intensities were evaluated by comparative densitomet_y. Both

laboratories claim • 15 percent to ± 20 percent precision on routine

analyses. Comparison of analyses obtained on the same samples in the

two laboratories showed agreement to within ± 20 percent of the mean for

all elements except chromium, for which the analyses made at the Cali-

fornia Institute of Technology were too high by a factor of about 3, and

strontium, where the Survey analyses were apparently high systematically

by a factor of 2 to 3. The Survey values for chromium are reported here

because they agree with those obtained by wet chemical analysis (Duke,

1963) and neutron activation analysis (Schmitt and Smith, 1964); the

California Institute of Technology strontium determinations are given,

as they agree well with those made by Gast (1962), where comparison can

be made. The spectrographic analyses for Mn made in both laboratories

are in good agreement, but are systematically low by about 30 percent

with respect to data obtained by neutron activation analysis (Schmitt

and Smith, 1964). Other spectrographic determinations for total mete-

orites agree well with data compiled by Mason (1962). These values are

arithmetic means of at least four determinations, two from each laboratory.

Interpretation

Fractionation between pyroxene and plagioclase

Table 4 gives typical distributions of minor elements between plagio-

clase and pyroxene in two basaltic meteorites. These data show the ele-

ments Sn, Mn, Cr, Co, Ni, V, Ti, Sc, Nb, Zr, and Y to be concentrated in

pyroxenes and Ba and Sr to be concentrated in plagioclase. These dis-

tributions are consistent with crystal chemistry and normal distributions

in terrestrial basaltic rocks.
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Table 4. Typical distribution of minor elements in coexisting

plagioclase and pyroxene (ppm)

Serra de Mage Juvinas

Plagioclas e Pyroxene Plagioclase Pyroxene
Sn 0 Ii 0 14

Mn 90 6700 360 7400

Cr 84 22.50 230 1650

Co 0 6.2 0 5.7

Ni < 6 6.2 < 3 3.7
Ba 15 0 84 3.6

Sr ii0 4 130 < 2

V i0 155 15 130

Ti 5 130 66 240

Sc < 2 32 5 41
Nb < 5 20 < 5 25

Y < l0 20 < l0 25
Zr 0 < i0 0 58
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The mineral separates were madeon small amounts of starting
materials and could not be entirely cleaned up in manycases. This

was a more important effect for the finer-grained meteorites such as

Juvinas than in the coarser-grained meteorites such as Serra de Mage.
The smaller apparent magnitudes of elemental fractionations between

plagioclase and pyroxene in Juvinas is undoubtedly due to the larger

amounts of im_purities in those mineral separates than in Serra de Mage

Systematic variations of minor-element abundances

The most obvious correlations of the minor-element data are with

respect to Fe/Fe + Mg, which is governed by the composition of pyroxene
in the meteorites.

Duke and Silver (in preparation) have used the ratio Fe/Fe +Mg
as an indicator of the degree of magmatic differentiation of basaltic
meteorites. If this index is used to order the minor-element data in

the analyses of mineral separates, Mn and Sc in pyroxenes tend to in-

crease with increasing Fe/Fe + Mg, Cr in pyroxenes tends to decrease
and Ba in plagioclase very definitely increases.

In total meteorite analyses, the minor-element content is a func-

tion of proportion of the minerals as well as of their compositions.
The lack of a significant systematic variation of Mn in whole rock

meteorite determinations, for instance, maybe due to the fact that

with increasing Fe/Fe + Mg, the proportion of pyroxene tends to de-

crease, whereas Mn in pyroxene tends to increase. Ti, which is concen-

trated in the mineral ilmenite, whos a general increase with increasing
Fe/Fe +Mg. Ba, and to a lesser extent, Sr, which are concentrated in

plagioclase, increase with increasing Fe/Fe +Mg. Thesevariations are

consistent with the model of magmaticdifferentiation. With respect to
the correlation with Fe/Fe +Mg the whole rock Ba content of Stannern
is anomalously high. The sameanomalouscharacteristic is found for the

alkali elements and for the rare-earth elements (table 5) in Stannern.

Duke (1963) showedthat the plagioclase of Stannern is more sodic (An80)

than most other basaltic meteorites. The correlations between Ba, alkalis
and La suggest that La and other rare-earth elements are concentrated in

the plagioclase.
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Duke (1963) and Duke and Silver (in preparation) have suggested

that the range of Fe/Fe +Mg in basaltic meteorites covers essentially

the range from undifferentiated parent material, with Fe/Fe +Mg < 0.3

to highly differentiated rocks with Fe/Fe + Mg > 0.6. If this criterion

is used here, some limits can be placed on the minor-element content of

the parent material of the basaltic meteorites, which in this interpre-

tation would be similar to the concentrations in Binda, Crab Orchard

aim E_therviiie.

These data can also be combined with independent determinations

of uranium (Morgan and Lovering, 1964, 1965) and potassium to suggest

possible U-K ratios in the basaltic meteorite parent material (table 5).

As in the case of Ba and rare-earth elements, the data of Morgan and

Lovering (1964, 1965) indicate an enrichment of U with increasing

Fe/Fe + Mg, with values close to chondritic concentrations for basaltic

meteorites with lower Fe/Fe +Mg (such as Binda). The enrichment of

uranium is more extreme than the enrichment of potassium and it is in-

ferred that the U-K ratio varies from about 1 x 10 -4 for the undiffer-

entiated basaltic meteorite parent material to about 3 x 10 -4 for

Nuevo Laredo.

The U-K ratio of 1 x 10 -4 is similar to the U-K ratio proposed

by Wasserburg and others (1964) for the Earth's upper mantle. This

is consistent with a closer relationship of the basaltic meteorites

to the Earth than to the chondrites as has been suggested recently by

several authors (Wasserburg and others, 1964; Engel and others, 1965).

Whereas the rare-earth element ratios seem to relate chondrites to

basaltic meteorites in oxygen isotope ratios (Taylor and others, 1965),

the basaltic meteorites are dissimilar to the Earth as well as to the

chondrites. More data on the basaltic meteorites and the Earth's

upper mantle are needed to help resolve these inconsistencies.

The basaltic meteorites are interpreted by Duke and Silver (in

preparation) as the crustal rocks of their parent body. The develop-

ment of the minor-element concentrations in basaltic meteorites may

therefore have a direct bearing on the manner in which these elements

are distributed during the early formation of planetary crusts. Based

on these data, for instance, the crust of the basaltic meteorites'
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parent body contains approximately 6 times the uranium content of its

parent material (Estherville-like or Binda-like) and 2 times the po-

tassium content. These fractionations and the attendant crustal en-

richment of uranium in the parent body may play an important part in

the determination of the long-term thermal history of the parent body.

Comparison to chondrites

Previous isolated analyses have shown certain achondrites to have

much larger or lesser amounts of elements than chondrites. For example,

Reed and others (1960) determined the Ba content of Nuevo Laredo to be

44 ppm. As an isolated number, it was difficult to explain. The present

data show that as a function of Fe/Fe + Mg, the Ba content shows a sys-

tematic increase from the chondritic value of 4 ppm to more than 40 ppm

in Nuevo Laredo. This is consistent with magmatic differentiation of

a parent material with an initial Ba content similar to chondrites. The

same applies to most other elements except the alkalis. The parent mate-

rial must have had much smaller quantities of alkalis than the chondrites,

as has been suggested previously (Duke, 1963).

Hypersthene and diopside achondrites

The Mn, Cr, and Sc contents of the pyroxenes of hypersthene achon-

drites are similar to those of the basaltic meteorites, and it is possible

that these types are genetically related. Taylor and others (1965) showed

that the oxygen isotopic ratios of hypersthene achondrites and basaltic

meteorites were identical, further supporting a genetic relationship.

The pyroxene of the diopside achondrite, Nakhla, is similar in

minor-element content to that of Sherghotty, an atypical basaltic mete-

orite, and these pyroxenes are distinctly different from other basaltic

meteorite pyroxenes.

The most obvious differences are in the siderophile elements, Co

and Ni, which are much more abundant in the pyroxenes of Nakhla and

Sherghotty. This feature is correlated with the presence of primary

magnetite and the absence of metallic iron in these two meteorites.

Higher partial pressures of oxygen during the magmatic crystallization
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of Nakhla and Sherghotty may have prevented the separation of a metallic

phase with consequent scavenging of nickel and cobalt as suggested for
the basaltic meteorites by Duke (1965).
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A PROPOSEDORIGINFORCOHENITE

by Robin Brett

Introduction

terrestrial deposits of native iron. It is the natural equivalent to

cementite (Fe3C), from which it differs only by containing nickel and a

trace of cobalt.

Cohenite, like cementite, is metastable at all temperatures at i atm

pressure and decomposes in measurable times at elevated temperatures.

Its occurrence in meteorites therefore suggested to Ringwood (1960) that

it formed at pressures of 25 kb or more. This would require a parent

body of at least lunar dimensions. Since the appearance of Ringwood's

paper, the literature on cohenite has been active.

In view of the current interest in cohenite and of the broad impli-

cations of a high pressure origin, a thorough study of its occurrence,

decomposition kinetics, and phase equilibria has been attempted.

Controversial literature exists on the origin of cohenite.. Leading

contributors have been Ringwood (1960, 1965) and Rin_ood and Seabrook

(1962), who argue a high-pressure origin for the phase, largely on thermo-

dynamic grounds, and Lipschutz and Anders (1961, 1964), who opposed

Rin_ood initially with the argument that phosphorus stabilizes cohenite

at i atm and more recently with the suggestion that previous thermodynamic

and phase equilibria studies on the system Fe-C are incorrect, so that

cohenite is stable at neither high nor low pressures. Ringwood and

Seabrook (1962) and Rin_ood (1965) have refuted the objection of Lipschutz

and Anders.
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The occurrence and composition of cohenite

Structure and composition

Cohenite is orthorhombic, space group Pbnm (Palache and others, 1944),

and contains 0.5 to 3 wt. percent nickel (Lovering, 1964; Brown and Lip-

schutz, 1965). On the basis of published analyses, it is unlikely that

the cobalt content exceeds i wt. percent or that the carbon content

deviates much from the stoichiometric ratio.

Terrestrial occurrence

Cohenite is found in the native iron of Ovifak, Disko Island,

Greenland (L_fquist and Benedicks, 1941; Lovering, 1964), which occurs

as segregations in a series of basalt flows. Abundant graphite accompa-

nies the iron and cohenite.

Lovering (1964) states that the overall composition of the metallic

masses at Ovifak approximates the composition of a hypereutectoid steel

containing about 3 wt. percent carbon, 1.7 wt. percent nickel, 0.6 wt.

percent cobalt, and 0.2 wt. percent copper. Cohenite also occurs in the

native iron of the glassy basalt flows at B_hl in Germany (Ramdohr, 1953).

Meteoritic occurrences

Stony meteorites.--Cohenite has been reported in the enstatite

chondrites Abee (Dawson and others, 1960), Indarch (Ramdohr, 1964), and

St. Mark's (P. Ramdohr, written communication, 1965). Ramdohr (1963)

states that cohenite is rare in the stones and generally occurs _ith

kamacite (_-Fe_Ni) in a structure that is partly pearlitic. The metal

in Abee contains 4.5 wt. percent nickel, and 0.2 wt. percent carbon

(D_son and others, 1960). Electron-probe analyses of the metallic por-

tion of St. Mark's by K. Fredriksson (oral communication, 1965) are as

follows :

Fe 91.0 89.9

Ni 4.0 6.3

Si 3.2 3.5

Co tr. tr.

C n.d. nod.
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The m e t a l  i n  Indarch  con ta ins  6 . 7  w t .  percent  n i cke l ,  i f  i t  i s  assumed 

that a l l  the n i c k e l  i s  i n  t h e  metal phase and the  d a t a  of Wiik (1956) 

are used. 

I r o n  meteori tes . - -Coheni te  - has been conf imed  i n  t h e  26 i r o n  meteor- 

i tes l i s t e d  i n  t a b l e  1. 

b u t  E. P. Henderson and S. H. Perry (unpublished manuscript)  s ta te  that 

a l l  o t h e r  repor ted  occurrences r e q u i r e  confirmation.  

The mineral  has  been repor ted  i n  o t h e r  me teo r i t e s ;  

Twenty-one of the 26 meteor i tes  i n  which coheni te  has  beer? con- 

f i m e d  have n i c k e l  conten ts  Setwee:: 5 and 8 w t .  percent ,  and 20 of these 

2 1  are coarse  o c t a h e d r i t e s .  Less than one i n  t h r e e  analyzed i r o n  meteor- 

i t es  have n i c k e l  conteDts w i t h i n  t h i s  l imi t ed  range of composition (Yavnel, 

1958). Thus i t  would appear t h a t  the d i s t r i b u t i o n  of me teo r i t e s  t h a t  con- 

t a i n  cohen i t e  i s  n o t  random and t h a t  coheni te ,  wi th  c e r t a i n  except ions,  i s  

r e s t r i c t e d  t o  me teo r i t e s  conta in ing  between 6 and 8 w t .  percent  n i c k e l .  

I n  t h e  oc t ahedr i t e s ,  coheni te  occurs almost exc lus ive ly  i n  i r r e g u l a r ,  

sca l loped  and rounded g ra ins ,  up t o  a few m i l l i m e t e r s  maximum length,  

e longated along kamacite lamellae ( f i g .  1). 

wi th  t a e n i t e  (E. P. Henderson and S.  H. Perry,  unpublished manuscript) .  

R i m s  of coheni te  may surround s m a l l  s c h r e i b e r s i t e  i (Fe ,  Ni)2P] bodies ,  

as i n  t h e  Canyon Diablo me teo r i t e .  

It i s  r a r e l y  found i n  con tac t  

Cohenite a l s o  occurs  as r i m s  around 

Fig .  1.--Etched su r face  of Canyon Diablo me teo r i t e  showing unusual ly  

l a r g e  amounts of sca l loped  coheni te  roughly a l igned  along kamacite lamel- 

lae. 

extremely h igh  f o r  i r o n  me teo r i t e s .  

Po in t  count ing r evea l s  carbon conten t  of about 0.6 w t .  percent ,  

(Photo by the  late S .  H .  Perry.)  
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Table I. Iron meteorites in which cohenite has been confirmed

Meteorite Type* Approx. Ni+ Cohenite confirmed by

Bendego Og

Breece Om

Canyon Diablo Og
Chesterville NPA

Coolac Og

Cosby Creek Og

Cranbourne Og

Gun Creek Om

Lexington Co. Og
Locust Grove NPA

Magura Og

Mooranoppin Og

Mr. Ayliff Og

Mt. Stirling Og

Navajo NPA

Odessa Og

Pittsburg Og

Rosario Og

St. Francois Co. Og

Seligman Og

Seymour Og

Smithville Og

Tambo Quemada Om

Wichita Co. Og

Yenberrie Og

Youndegin Og

6.5- 7.0 Mason, 1962

9.0 - 9.5 Henderson and Perry,

1958

7-8 Mason, 1962

5-6 Perry, 1944

6.5 - 7.0 Mason, 1962

6.5 - 7.0 " "

6-8 " "

6-7 E.P. Henderson (oral

comm., 1965)
-L

7.0- 7.5 _ Mason, 1962

5.5 - 6.0 Perry, 1944

7- 7.5 Mason, 1962

7 - 7.5 " "

6.5 - 7.0 " "

6.5 - 7.0 " "

5-6 " "

7-8 " "

6.5 - 7.0 § " "

? fl If

6.5 7.0 " "

6.5 7.0 _ II II

? E.P. Henderson (oral

comm., 1965)

7.0 - O_
7. Mason, 1962

9.5 i Perry, 1942-53

7.5 - 8.0 " "

7.0 7.5 :_

6-7

II I!

I! II

*The revised classification of Lovering and others (1957) has been

used.
I

tNickel analyses are from Prior (1953), except where noted. Analyses

are given as a range to the nearest 0.5 wt. percent.
i

_E. P. Henderson, unpublished data.

§Henderson and Perry, 1958.
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graphite inclusions (El Gorese_1965). Perry (1944) states that cohenite

is confined to areas rich in carbon compared to the bulk of the meteorite.

The occurrence of cohenite in the nickel-poor ataxites Navajo, Locust

Grove, and Chesterville, and the medium octahedrites, Breece and Tambo

Quemada differs from the above. In Locust Grove, Chesterville, and Tambo

Quemada the cohenite occurs in a fine-grained eutectic texture consisting

n_ metal, _h_o_ .... _ _^-_^ (Perry, _9_)_''_ Dendritic forms,

indicaEive of rapid cooling, are common.

Perry (1942-53) states that the cohenite in Navajo is extremely fine

grained. In Breece, cohenite is sparse and very fine grained; it could

not be detected microscopically, but only by leaching and subsequent

x-ray methods (Henderson and Perry, 1958).

Carbon in meteorites

It is clear that the carbon content of an alloy is important in

cohenite formation. The graphite and carbon contents of meteorites are

therefore discussed below. It would appear that meteorites containing

cohenite are high in carbon.

Observations by Heide and others (1932), Perry (1944), Nininger

(1952), E. P. Henderson (oral communication, 1965) and the present writer

leave little doubt that carbon commonly occurs in the iron meteorites

both as macroscopic nodules and microscopic inclusions. Carbon analyses

of iron meteorites are probably not representative of the true carbon

distribution because of the extremely patchy occurrence of graphite

nodules. Published carbon analyses for iron meteorites range from zero

to over half a percent. Buddhue (1946), from a compilation of previous

analyses, gives 0.2 wt. percent as the average carbon content of hexa-

hedrites and octahedrites. Buddhue's analyses show that all classes of

iron meteorites may contain carbon. Perry (1944) states that Dungannon,

Canyon Diablo, Savannah, Seelasgen, and Cosby's Creek all have high

carbon contents of between 0.4 and 0.55 wt. percent. It is noteworthy

that two of these five meteorites with high carbon contents also are

known to contain cohenite.
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The system Fe-Ni-C

To speculate on the origin of cohenite it is necessary to review

the published literature on the formation of phases in the Fe-Ni-C

system. The three binaries constituting the ternary system have been

investigated in somedetail; however, few studies have been madeof the

ternary system, so far as the writer is aware. The lack of study is
not due to unimportance of the system, but rather to experimental diffi-

culty. Reaction rates in the binary system Fe-Ni are extremely slow,

and both the systems Fe-C and Fe-Ni are beset with problems caused by
the appearanceof metastable phases. The present ternary phase diagrams

have therefore been compiled entirely by extrapolation of data from the

bounding binary systems. The extrapolation in the composition region
of interest is of a fraction of a weight percent only, and therefore is

justifiable.
Assemblagesinvolving cohenite are metastable and decomposein

time to the assemblagemetal + graphite. Cohenite maybe treated as a

stable phase in the diagrams by analogy with cementite in the system

Fe-C, in which metastable equilibria involving cohenite are reversible.

System Fe-C

Fe3Cis metastable at all temperatures at low pressures, but nu-
cleates in preference to the stable Fe + C (fig. 2). On prolonged

annealing, cementite decomposes. The carbides Fe2C (Hofer and others,

1949), Fe2C3 (Herbstein and Snyman,1964), Fe3C2 (Senateur and others,
1962), and Fe4C (Pinsker and Kaverin, 1956) have been reported, but

they are unstable with respect to Fe3C.
Kaufman(1965) has summarizeddata on the system at high pressures.

The eutectoid composition becomesmore iron rich with pressure, so that

the solubility of carbon in _-Fe decreases with pressure. In addition,

both the temperature of the eutectoid and the _-_ transition decrease

with pressure. The revised high-pressure diagram of Lipschutz and

Anders (1964) maybe disregarded as sho_n by Ringwood (1965). Similarly,

the P-T diagram presented by Olsen (1964) has been neglected in the pre-

sent study, as it is inconsistent with the well-established l-atm
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Fig. 2.--Portion of the temperature-composition diagram Fe-C at I

atm (after Hansen and Anderko, 1958). Solid lines represent metastable

equilibria, dashed lines true equilibria. _ = kamacite, y = taenite.
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pressure phase diagram (Hansen and Anderko, 1958) and with the high-

pressure data summarized by Kaufman (1965). The stability field of

Fe3C in the hypoeutectoid region is that shown by Lipschutz and Anders

(1964, figure 3).

System Fe-Ni

Equilibria in the system Fe-Ni are shown in figure 3 after

Goldstein and Ogilvie (1965a).

The Fe-Ni diagram has been calculated from thermodynamic data for

high pressures by Kaufman and Ringwood (1961) and Ringwood and Kaufman

(1962).

System Ni-C

The low-temperature, nickel-rich portion of the diagram is shown

in figure 4. The solubility of carbon in nickel at 700 ° C is 0.08 wt.

percent according to Lander and others; hence by extrapolation, is a

few hundredths of I percent at lower temperatures.

Nickel carbide (Ni3C) is not stable at any temperature at low

pressures (Hofer and others, 1950). The system has not been investi-

gated at high pressures.

System Fe-Ni-C

The isothermal sections drawn in figures 5 and 6 are based on the

preceding data on the three binary systems and from the results of

Heller and Branner (1964), who found that for alloy compositions from

Fel00 to Fe95Ni5 , nickel has no detectable influence on the solubility

of carbon in kamacite (_ - Fe, Ni). The results of Samuel and others

(1955) have not been used, as they are inconsistent with the well-

established iron-carbon temperature-composition diagram.

In drawing the sections, the following assumptions have been

made:

i. The nickel content of cohenite in equilibrium with kamacite

and taenite is assumed to be approximately 3 wt. percent, in keeping

with natural occurrence.

2. All boundaries of solid solution fields are assumed linear
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following the thermodynamic reasoning of Meljering (1959) for ferrite-

austenite type equilibria.

3. The maximum carbon content of taenite at any given temperature

was determined from the binary data by interpolating between the

solubilities in the binary systems Fe-C and Ni-C.

Using the experimental data of Mehl and Wells (1937) and

Hansen and Anderko (1958), the logarithm of the atomic fraction of

carbon in taenite coexisting with Fe3C was plotted versus the recipro-

cal of absolute temperature. The plot was linear, suggesting that the

solution of Fe3C in taenite behaves ideally. This plot was used for

extrapolation to determine the matastable extension of the taenite-

Fe3C boundary below the eutectoid.

4. The composition of taenite in equilibrium with cohenite +

kamacite at any given isotherm was obtained from the intersection of

the taenite - taenite + cohenite boundary (see above), with the taenite -

taenite + kamacite boundary. The latter was obtained by interpolating

the experimental data of Goldstein and Ogilvie (1965a) for the composi-

tion of taenite in equilibrium with kamacite at fixed temperature for

the Fe-Ni system with the calculated data on taenite compositions of

Andrews (1956) for the Fe-C system.

5. The composition of kamacite coexisting with taenite and

cohenite was assumed to be very close to the composition of kamacite

in equilibrium with taenite at any given temperature.

6. Both cobalt and phosphorous have been ignored in the con-

struction and discussion of the diagrams. Iron meteorites usually con-

tain about 0.5 wt. percent cobalt, which tends to follow iron; whereas

phosphorus is only present to about 0.2 wt. percent (Buddhue, 1946).

Both elements are present in insufficient quantities in meteorites to

affect the present conclusions.

7. The 600 ° C isotherm in figure 6 represents a change in assem-

blages according to the reaction taenite + cohenite = kamacite +

graphite. This is not strictly a change in tie lines, but represents

a postulated change in cohenite from a metastable to an unstable state

at 600 ° C. The evidence for the change is that both increase in total

nickel content and decrease in temperature and are known to increase
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the free energy of formation of cohenite (Rin_ood, 1960). Kamacite +

graphite is thus favored by falling temperature and the concomitant in-
crease of the nickel c_ntent of taenite. If the change occurs at 600° C

then cohenite does not form in alloys of meteoritic composition contain-

ing more than approximately 8 wt. percent nickel. This is consistent

with natural occurrenc_ so 600 ° C was accordingly chosen as the tempera-

ture of the change.

An examination of the isothermal sections reveals the following

details:

(i) Taenite is stabilized by carbon so that the nickel con-

tent of the carbon-saturated phase in equilibrium with kamacite is

appreciably less than that of carbon-free taenite. At 723 ° C, where

experimental data are abundant, the difference in nickel content is

8 wt. percent.

(b) The temperature at which cohenite appears in alloys of

meteoritic compositions is very sensitive to both nickel and carbon

contents of the bulk composition and varies from 723 ° to about 600 ° C

(the temperature at which cohenite no longer forms metastably).

The system Fe-Ni-C at high pressures

The phase equilibria for the system at 50 kb and 600 ° C are as

shown in figure 7, which was drawn using the data available on Fe-Ni

(Ringwood and Kaufman, 1962) and Fe-C (Kaufman, 1965). Cohenite is a

stable phase with respect to metal + graphite at this pressure (Ringwood,

1960), hence figure 7 is a true equilibrium diagram.

Kinetics of cohenite decomposition

Mechanism of decomposition

Cementite decomposition consists of cementite solution and graphite

nucleation within the surrounding matrix, or at cementite-metal interfaces

(Hickley and Quarrel, 1954; Higgins and Jeminson, 1965). Hickley and

Quarrell published photographs of the graphitization phenomenon and point

out that graphite spherules coalesce in time, the larger ones growing at

the expense of the smaller.
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Fig.  7 . - - I so themal  s e c t i o n  of po r t ion  of the system Fe-Ni-C a t  

600' C and 50 kb. 

as i n  f i g u r e  5. 

A l l  phases inc luding  coheni te  are s t a b l e .  Symbols 

Fig.  8.--Cohenite from Coolac o c t a h e d r i t e  ( l i g h t  gray)  decomposed 

t o  g r a p h i t e  (black) and metal (dark gray) .  

by dark  gray are f r a c t u r e s .  Note g r a p h i t e  o r i e n t a t i o n .  Cohenite held 

at 650" C f o r  80 days. 

Black masses n o t  surrounded 

Crossed n i c o l s .  (Photo by P. Ramdohr.) 
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Both Lipschutz and Anders (1964) and Ringwood (1965) appear to

have assumedincorrectly that the graphitization of meteoritic cohenite

takes place within the cohenite grains themselves.
If cohenite or cementite grains are fractured, as is generally the

case in meteorites which have suffered impact, graphite nucleation is

preferential along cracks, as shownby the studies of Lipschutz and
Anders (1964) and Ringwood (1965). If cohenite grains are removedfrom

met_l._ de_ompn_t_on takes place along crystallographically oriented

planes after nuclei have formed along any fractures that may be present

(fig. 6). Once decomposition begins, the decomposition process is that

described by Higgins and Jeminson (1965), namely, solution of cohenite,

diffusion of carbon to the graphite mass, and precipitation of carbon

with concomitant diffusion of metal away from the growing graphite.

Rate of decomposition

There has been little work on the kinetics of decomposition of

cementite or cohenite that is strictly comparable to the decomposition

of cohenite in nature. Many studies on synthetic alloys of considerable

impurity have been performed in the presence of graphite nuclei. Higgins

and Jeminson (1965), among others, have demonstrated the increased rate

of graphitization in the presence of nickel. Approximately I wt. percent

nickel decreased decomposition times by an order of magnitude.

Present decomposition studies

Method.--The present decomposition studies are similar in method to

those of Ringwood and Seabrook (1962). Pieces of meteorite which con-

tained cohenite were initially used as starting materials; however, as

nucleation occurred along cracks in cohenite in these specimens, as in

separated cohenite grains, pure meteoritic cohenite was used for most

runs. It was not possible to find unfractured grains.

Small polished pieces of the Coolac octahedrite that contained

grains of cohenite and separated grains of cohenite from the Cosby's

Creek octahedrite were placed in separate silica glass tubes, which were

evacuated and sealed. The tubes were then heated at 650 ° , 750 ° , and

850 ° C. The tubes were quenched at given times.
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Results.--Microscopic examination shows that after a period of in-

duction decomposition occurs initially along fractures, then within the

body of the crystals as shown in figure 8. Note the apparent crystallo-

graphic control of the graphite particles along pinacoidal planes (P.

Ramdohr, oral communication, 1964). It is noteworthy that E1 Goresey and

Ramdohr (A. E1Gorese_ written communication, 1965) have observed ex-

tremely fine twinning parallel to a pinacoidal plane in cohenite from

Canyon Diablo. Coalescence of the rounded graphite particles occurs with

time. No pseudomorphs of graphite after cohenite were observed.

In any given run, the decomposition of some cohenite grains was

considerably advanced, whereas in other less fractured grains no trace

of graphite was evident. Microscopic point-counts were made of cohenite,

metal, and graphite abundances in all runs made at 650 ° C. When the

metal and graphite decomposition products were calculated in terms of

mole percent, good agreement (within 5 percent) was obtained with the

formula (Fe,Ni)3C. When percent decomposition was plotted against time,

considerable scatter was obtained. The results are similar innature to

those of Brett (1964), who, in studying the kinetics of decomposition

of certain sulfide solid solutions, concluded that each determined point

lies along one of a family of similar rate curves, each curve having a

given but unknown nucleation period. Nucleation of graphite appears to

be the rate-controlling step in cohenite decomposition (Lipschutz and

Anders, 1964).

The duration of runs in which total decomposition of cohenite had

occurred was noted, and the results are plotted in figure 9, together

with those of Ringwood and Seabrook. In view of the scattering observed

at 650 ° C, the time of decomposition at any given isotherm can be con-

sidered correct only within a factor of 2 or 3. The agreement is ex-

cellent between the present results and those of Ringwood and Seabrook

(1962).

The Fe3C decomposition curve for 50 percent decomposition as given

by Lipschutz and Anders (1964) from Klein's (1934) data on a synthetic

alloy is also plotted in figure 9. Note that it differs from the present

results over the experimental range by over 3 orders of magnitude. Such
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data can be similar only qualitatively to the data for natural cohenite

decomposition, as pointed out by Ringwood(1965).

The present results represent a minimumfor the time of total de-
L_u__atL on w_u_ncomposition of cohenite in nature in that .... i_ = occurred °-_

fractures in a shocked crystal. In cooling meteorites in nature, grains
are unfractured, so that nucleation must take place at interfaces in

metal at _i_tances ,Jp to centimeters from the given cohenite grain, caus-

ing di_L_zc_ fo_ ...................... _ _.... _............ times
to be slower.

Decomposition of cohenite in meteorites

The only iron meteorites, so far as the writer is aware, which show

possible evidence of thermal decomposition of cohenite similar to that

caused by laboratory annealing of cohenite (fig. 8) are Dungannon(Perry,

1944, Plate 62) and CanyonDiablo (Heymannand others, 1965). Dungannon,

which is a metamorphosedmedium-to-coarse octahedrite, has a (Ni + Co)

content of 7.4 wt. percent and is highly oxidized (Merrill, 1923).

P. Ramdohr(written communication, 1965) states that cohenite maydecom-

pose on oxidation to graphite + metal. Heymannand others ascribe the

rare graphitization in CanyonDiablo cohenite to shock-induced heating

caused by impact.
The scalloped textures of cohenite are evidence for decomposition,

by analogy with synthetic decomposition. Both Hickley and Quarrell

(1954, figs. 4 and 6) and Burke and Owen(1954, fig. 8) show photographs

of partially graphitized cementite very similar in texture to meteoritic

and terrestrial cohenite, which suggests that meteoritic cohenite has

partially decomposed.

Conditions of formation of cohenite

Temperature of formation

It is now possible to speculate on the conditions of formation of

cohenite in nature using the data reviewed and presented above on the

phase equilibria of its formation (figs. 5-7) and kinetic data on its

decomposition (fig. 9).
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It is clear from figure 6 that the lower the nickel content, the

higher the temperature of the reaction taenite -_kamacite + cohenite for

any given carbon content. Figure 6 shows that the field boundaries kama-
cite + cohenite - kamacite + taenite + cohenite and kamacite + taenite -
kamacite + taenite + cohenite move toward increasing nickel contents

with falling temperature. Meteorites containing up to 6 wt. percent

nickel had precipitated all their cohenite from solid solution, regardless
of the carbon content, when the temperature had fallen to about 640° C.

As cooling continued below this temperature, at i to I0° C per million

years in iron meteorites (Wood, 1964; Short and Anderson, 1965; Goldstein
and Ogilvie, 1965), meteorites containing more than 6 wt. percent nickel

began to deposit cohenite, the higher the carbon content the higher the

temperature at which cohenite first appeared. Cohenite precipitation
continued until the phase becameunstable at about 600° C.

The instability of cohenite below 600° C prevented the formation of
cohenite in meteorites containing more than about 8 wt. percent nickel.

Carbon contents in iron meteorites average only about 0.2 wt. percent

(Buddhue, 1946) and 0.4 wt. percent is an exceptionally high carbon
content (Perry, 1944). Therefore, at 600° C such meteoritic alloys of

more than 8 wt. percent nickel lie in the two phase region taenite +

kamacite of figure 5, and no cohenite formed.

Hexahedrites, whose compositions lie in the range 4 to 6 wt. percent

nickel, doubtless precipitated cohenite on cooling, but since the cohenite

formed at a temperature some30° C or so higher than cohenite in coarse

octahedrites, it had an additional 3 to 30 million years annealing time

at temperatures around 650° C in which to decompose,and did so.
It is postulated that cohenite in coarse octahedrites, formed at

lower temperatures, did not totally decomposein the cooling time avail-

able. For total decomposition to have taken place in hexahedrites and

not in octahedrites requires a decomposition rate curve in which the

decomposition time at 650° C is a little over 4 orders of magnitude

greater than that determined experimentally. The position of this curve
is shownin figure 9. It has already been pointed out that the experimen-

tally determined cohenite decomposition times are probably much less than
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composition curve which is compatible with natural occurrence of cohenite.

ioo

BC

-_ 6o

}
o

• , 40

ZO

o
7oo 600

* I
Cohenile formed

above 640°C I Cohen*re I
persistst

decomposes I I

I J
I /

7 I 7o/%/z_

'/i/]' '
I I

I

650

TE MPERATURE,_=C)

;ohenite will

nol form below

610°C

Fig. 10.--Plot of cumulative percentage of cohenite formed vs. tem-

perature for 3 meteorite compositions, each containing 0.3 wt. percent

carbon.

103



decomposition times in nature. Four orders of magnitude difference

does not appear unreasonable. If nucleation of kamacite in meteorites

is delayed by supercooling effects of up to i00 ° C (Wood, 1964; Short

and Anderson, 1965; Goldstein and Ogilvie, 1965), then temperatures of

cohenite formation would also be depressed by amounts up to i00 ° C.

Hence the situation shown in the 650 ° C isotherm would actually occur

at 550 ° C and the decomposition time would then be required to be a

little over 2 orders of magnitude slower than that measured experimentally

to be compatible with the present hypothesis.

Figure i0 shows the cumulative percentage of cohenite formed with

decreasing temperature compared to the total that can possibly form

(assuming that all carbon reacted to form cohenite) for alloys of

different nickel content, assuming a total carbon content in each alloy

of 0.3 wt. percent. Results are approximately the same for slightly

higher and slightly lower carbon contents. Percentages were obtained by

applying the well-known Lever Law to the isotherms in figure 6. It is

apparent from figure I0 that if all cohenite formed at temperatures

above 640 ° C decomposed during meteoritic cooling and that if cohenite

does not form below 600 ° C, then the only cohenite which persists in

meteorites is in those containing from 6 to 8 wt. percent nickel.

Cohenite occurrences in meteorites that do not lie in the 6 to 8 wt.

percent range can now be discussed.

Breece and Tambo Quemada are the only medium octahedrites that con-

tain cohenite. Henderson and Perry (1958) state that there is considerable

free carbon in Breece. The mineral has not been so painstakingly searched

for in other medium octahedrites; it possibly occurs in similar fine-

grained form in others which contain more than about 0.5 wt. percent car-

bon. For compositions high in nickel and carbon, figure 6 indicates that

cohenite forms from about 630 ° C to 600 ° C, at which temperature graphite

precipitates instead of cohenite. The rarity of cohenite in medium octa-

hedrites is explained by the rarity of meteorites with such high carbon

contents.

In the nickel-poor ataxites Locust Grove and Chesterville, cohenite

should form in the same temperature range as the hexahedrites and should
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therefore have decomposed during slow meteoritic cooling. However, the

dendritic and eutectoid textures involving cohenite in these two meteor-

ites (Perry, 1944) indicate extremely rapid cooling or shock (Heymann

and others, 1965), which explains the presence of the cohenite.

Perry (1942-53) states that in the nickel-poor ataxite Navajo, the

cohenite is extremely fine grained. To explain the presence of cohenite

in Lhi_ meteorite it must =_,,=."_+_""t11_.j_o,,_.._._1_11y h_gh............n_eke] contents

or (2) have cooled faster than i= to i0° C per million y_rs. Fast

ing is not surprising, since the meteorite is classed as a nickel-poor

ataxite, all of which appear to have been thermally metamorphosed (Mason,

1962) and hence had a different cooling history than unmetamorphosed iron

meteorites.

The preservation of cohenite in the enstatite chondrites Abee and

St. Mark's may be explained by rapid cooling. Pearlitic cohenite textures

would support this (Ramdohr, 1963).

The nickel content of metal in Indarch is in the range of coarse

octahedrites (6 to 8 wt. percent nickel), so the presence of cohenite in

this meteorite is not incompatible with very slow cooling; however, like

the other enstatite chondrites, the meteorite probably cooled rapidly.

Cohenite in Disko Island basalt may also be explained by rapid

cooling.

Cohenite both from meteorites and Disko Island should be partially

decomposed if the present hypothesis is correct. The rounded scalloped

borders of many cohenite grains would suggest that this is so, the graph-

ite migrating either to preexisting graphite inclusions or forming the

numerous small graphite particles found in iron meteorites.

Pressure of formation of cohenite

Meteorites containing cohenite could have cooled at any pressure,

at least so far as the presence of cohenite is concerned. If the cooling

of metallic meteorites took place at 50 kb (fig. 7), then cohenite once

formed would remain stable for all compositions of metallic meteorites

over the entire cooling range (Ringwood, 1960). However, the fact that

cohenite is limited to a narrow meteoritic composition range argues for

cooling at pressures compatible with a parent body of asteroidal rather
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than lunar dimensions if a common origin is assumed for the iron meteorites.

Conclusions

A consistent explanation has been suggested for the natural occur-

rence of cohenite. The explanation might be criticized because it is in-

volved and requires the coincidence that cohenite formed at or near tem-

peratures below _ich its rate of decomposition became negligible. It is

not unreasonable to require such a coincidence considering the extremely

narrow range of occurrence of cohenite. An indication of this narrow

range is the irregular occurrence of cohenite within a single meteorite.

This certainly reflects slight local variations in carbon and nickel con-

tent [see Perry, 1944, PI. 64 (2)].

If the hypothesis on cohenite formation is correct, it follows

that:

I. The presence of a few tenths of i percent of carbon in a nickel-

iron alloy may reduce the temperature at which the kamacite separates by

more than 50 ° C, assuming equilibrium conditions. The "supercooling"

effect in which nucleation of the _phase may be inhibited in iron meteor-

ites by over i00 ° C according to Wood (1964), Short and Anderson (1965),

and Goldstein and Ogilvie (1965b) may therefore be partly due to carbon

solubility in metal.

2. Cohenite formed between about 650 and 600 ° C in meteorites that

contain it. It formed in meteorites with lower nickel content than 6 wt.

percent at higher temperatures, but readily decomposed during cooling.

3. The narrow range of composition of meteorites containing cohenite

is explained by the restricted temperature range of formation in which

decomposition is not effective, and by the fact that cohenite does not

form below 600 ° C.

4. The greater the nickel or the carbon content of an alloy in

the range of meteorite compositions, the lower the temperature of cohenite

formation.

5. The time for decomposition of unfractured cohenite crystals with-

in a meteorite during cooling may be as great as several million years.
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6. On the basis of cohenite occurrence only, cohenite could have

formed in meteorites in any pressure environment.

7. The presence or absence of cohenite in meteorites may be ex-

plained in terms of phase equilibria and decomposition kinetics at i atm.

The lack of cohenite in meteorites of composition such that cohenite

could precipitate indicates low pressures during cooling.
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COSMICDUSTINVESTIGATIONS

by M. B. Duke and M. H. Carr

Knowledgeof the origin and history of cosmic dust is basic to our

understanding of the present nature and past history of the solar system_

Cosmic dust may originate from several sources, both within and beyoL,d

the solar system; these sources include the Moon, asteroids, and comets.

Ultimately, information regarding these sources can be gained from a

study of cosmic dust. Identification of cosmic constituents in sedi-
ments of the Earth and other planets maygive evidence of past cosmic

events and may facilitate interplanetary geologic correlation.
The meansof collecting, recognizing, concentrating and analyzing

cosmic dust pushes on the frontiers of manyaspects of engineering and

science and are in a stage of only preliminary development. Someof

the problems encountered in collecting above the atmosphere stem from

the low flux rates and high speeds of the particles and from the pre-

dominanceof very small particles (less than I _ diameter). For any

reasonable sampling time the extremely low flux rates prevent collec-

tion of anything but small particles (less than 20 _ diameter). As a

result, development of new techniques for analyzing and handling small

particles has been necessary. The small particle size also makes it

necessary that all work be done in carefully controlled dust-free atmos-

pheres. During fiscal year 1964, ultra-clean laboratories were there-

fore established in both Washington, D.C., and Menlo Park, California.

Wehave been invited by other agencies to participate in experi-
ments to collect material above the atmosphere. In fiscal year 1964

we prepared prototypes of the sampling surfaces to be flown as part of
the Gemini collection experiment. Sampling surfaces were also florin

on the first engineering flight of the Luster program. Wedo not have

as yet, however, any material that was collected above the atmosphere.

During fiscal year 1965we anticipate obtaining samples from both the

Luster and Gemini experiments.
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Meanwhile, work has been continuing on dust collected within the

atmosphere. Here the principal problem is in recognizing the extra-

terrestrial componentof the dust sampled from the terrestrial com-

ponent. The extent of terrestrial contamination depends on the size

of the particle, on the altitude of collection, and on various meteor-

ologic conditions. As a first step in the process of discriminating
between extra-terrestrial and terrestrial particles, we have been

systematically cataloguing the different types of particles found in
the atmosphere at elevations above 30,000 feet. This material has also

been used in the development of techniques of particle manipulation and

transfer, and of particle analysis. The existing analytical facilities

pertinent to analysis of small particles are being added to and improved

upon. During fiscal year 1965 the electron microprobe and electron

microscope facilities in Washington, D.C., were upgraded and during

fiscal year 1966 electron microprobe and electron microscope laboratories
will be established in Menlo Park.

The ultimate aim of the cosmic dust program is to completely charac-

terize cosmic dust morphologically, mineralogically, and chemically.

Attainment is presently hamperedby the lack of samples in which cosmic

dust concentrations are large enough to work with conveniently. Further

exploration of methods of sampling, especially by high altitude airplane

or balloon, are needed.
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